Cubics - Past Edexcel Exam Questions

1. Factorise completely

$$
\begin{equation*}
x^{3}-4 x^{2}+3 x \tag{3}
\end{equation*}
$$

Question 1 - Jan 2006
2. Given that $f(x)=\left(x^{2}-6 x\right)(x-2)+3 x$,
(a) express $f(x)$ in the form $x\left(a x^{2}+b x+c\right)$, where a, b and c are constants.
(b) Hence factorise $f(x)$ completely.
(c) Sketch the graph of $y=f(x)$, showing the coordinates of each point at which the graph meets the axes.

Question 9 - May 2006
3. (a) On the same axes sketch the graphs of the curves with equations
i. $y=x^{2}(x-2)$
ii. $y=x(6-x)$
and indicate on your sketches the coordinates of all the points where the curves cross the x-axis.
(b) Use algebra to find the coordinates of the points where the graphs intersect. [7] Question 10 - Jan 2007
4. The curve C has equation

$$
y=(x+3)(x-1)^{2}
$$

(a) Sketch C, showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.
There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.

Question 10 - Jan 2008
5. Factorise completely

$$
x^{3}-9 x
$$

6. The point $P(1, a)$ lies on the curve with equation $y=(x+1)^{2}(2-x)$.
(a) Find the value of a.
(b) On the axes below, sketch the curves with the following equations:
i. $y=(x+1)^{2}(2-x)$,
ii. $y=\frac{2}{x}$.

On your diagram show clearly the coordinates of any points at which the curves meet the axes.

(c) With reference to your diagram in part (b), state the number of real solutions to the equation

$$
(x+1)^{2}(2-x)=\frac{2}{x}
$$

Question 8 - Jan 2009

7. (a) Factorise completely $x^{3}-6 x^{2}+9 x$.
(b) Sketch the curve with equation

$$
y=x^{3}-6 x^{2}+9 x
$$

showing the coordinates of the points at which the curve meets the x-axis.
Using your answer to part (b), or otherwise,
(c) sketch, on a separate diagram, the curve with equation

$$
y=(x-2)^{2}-6(x-2)^{2}+9(x-2)
$$

showing the coordinates of the points at which the curve meets the x-axis.
8. (a) Factorise completely $x^{3}-4 x$.
(b) Sketch the curve with equation

$$
y=x^{3}-4 x
$$

showing the coordinates of the points at which the curve meets the x-axis.
The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.
(c) Find an equation of the line which passes through A and B, giving your answer in the form $y=m x+c$, where m and c are constants.
(d) Show that the length of $A B$ is $k \sqrt{10}$, where k is a constant to be found.

Question 9 - Jan 2010
9. (a) On the axes below sketch the graphs of
i. $y=x(4-x)$,
ii. $y=x^{2}(7-x)$,
showing clearly the coordinates of the points where the curves cross the coordinate axes.

(b) Show that the x-coordinates of the points of intersection of

$$
y=x(4-x) \quad \text { and } \quad y=x^{2}(7-x)
$$

are given by the solutions to the equation $x\left(x^{2}-8 x+4\right)=0$.
The point A lies on both the curves and the x and y coordinates of A are both positive.
(c) Find the exact coordinates of A, leaving your answer in the form $(p+q \sqrt{3}, r+s \sqrt{3})$, where p, q, r and s are integers.

Question 10 - May 2010
10. (a) Sketch the graphs of
i. $y=x(x+2)(3-x)$,
ii. $y=-\frac{2}{x}$,
showing clearly the coordinates of all the point where the curves cross the coordinate axes.
(b) Using your sketch state, giving a reason, the number of real solutions to the equation

$$
x(x+2)(3-x)+\frac{2}{x}=0
$$

Question 10 - Jan 2011

Solutions

1. $x(x-3)(x-1)$
2. (a) $x\left(x^{2}-8 x+15\right)$
(b) $x(x-5)(x-3)$
(c) .

3. (a)

(b) $(-2,-16),(3,9)$
4. (a) .

(b) $k=3$
(c) $x=\frac{4}{3}, x=-2$
5. $x(x-3)(x+3)$
6. (a) $a=4$
(b) .

(c) The graphs intersect twice and so there are 2 solutions. We know they intersect twice since the point $(1,4)$, on the reciprocal functions, lies above the point $(1,2)$ on the cubic.
7. (a) $x(x-3)^{2}$
(b) .

(c) .

8. (a) $x(x-2)(x+2)$
(b) .

(c) $y=3 x+6$
(d) $k=4$
9. (a) .

(b) -
(c) $(4-2 \sqrt{3}, 8 \sqrt{3}-12)$. Note that both $4+2 \sqrt{3}$ and $4-2 \sqrt{3}$ are both positive.
10. (a) .

(b) There are 2 solutions since the curves intersect twice.
