Starting from 2^{6} find a route to the opposite side of the rectangle so that each value you land on is equivalent to 2^{6}.

You may only move one space horizontally or vertically each time - no diagonal moves allowed!

$2^{6} \times 2^{3}$	$3^{2} \times 2^{3}$	$(\sqrt{ } 16)^{2}$	$\left(2^{3}\right)^{3}$	$8^{3} \div 8$	$4^{4} \times 4^{-3}$	$(\sqrt[3]{8})^{4}$	8×4^{2}
$\sqrt{ } 8^{3}$	$\left(2^{3}\right)^{2}$	$8^{7} \times 8^{-5}$	4^{3}	$2^{-2} \times 2^{7}$	64^{0}	$2^{5} \times 2^{3}$	$4^{7} \div 2^{3}$
$(\sqrt{ } 64)^{3}$	8^{2}	$2^{2} \times 2^{3}$	$2^{3} \times 2^{3}$	$\left(2^{3}\right)^{3}$	$(\sqrt[3]{8})^{6}$	$4^{6} \times 4^{-3}$	$2^{2} \times 4^{2}$
2^{6}	$(\sqrt{ } 64)^{2}$	$4^{6} \times 4^{-2}$	$(\sqrt{ } 16)^{3}$	$\left(2^{2}\right)^{4}$	$8^{3} \div 2^{3}$	$2^{-3} \times 2^{7}$	$\left(2^{2}\right)^{4}$
3^{5}	$2^{6} \times 2^{1}$	8^{3}	$4^{5} \div 2^{4}$	$(-4)^{-3}$	$\left(2^{2}\right)^{3}$	$(\sqrt{ } 8)^{3}$	$4^{6} \div 2^{6}$
$4^{3} \times 4^{-3}$	$\left(2^{5}\right)^{1}$	$(\sqrt[3]{6} 6)^{2}$	$2^{3} \times 8$	$2^{-1} \times 2^{7}$	$\left(\frac{1}{4}\right)^{-3}$	16^{2}	64

Teacher notes

Content: Evaluating surds
Possible uses:

- As an extension task for more able pupils: e.g. if they haven't yet encountered a negative index
- As a task to identify misconceptions: some common misconceptions are targeted and will lead to an incorrect route
- As a consolidation task

Resource options:

- PowerPoint file for whole class projection
- Worksheet for individual pupils

Answers

	$\left(2^{3}\right)^{2}$	$8^{7} \times 8^{-5}$	4^{3}				
2^{6}	$(\sqrt{64})^{2}$		$(\sqrt{16})^{3}$		$8^{3} \div 2^{3}$		
			$4^{5} \div 2^{4}$		$\left(2^{2}\right)^{3}$		
			$2^{3} \times 8$	$2^{-1} \times 2^{7}$	$\left(\frac{1}{4}\right)^{-3}$		

NB there are a few other expressions on the grid that are also equivalent to 2^{6} but none are connected to the route as a 'legal' move.

