

Short activity

Starting from 2^6 find a route to the opposite side of the rectangle so that each value you land on is equivalent to 2^6 .

You may only move one space horizontally or vertically each time – no diagonal moves allowed!

2 ⁶ x2 ³	$3^{2}x2^{3}$	(√16) ²	$(2^3)^3$	8 ³ ÷8	$4^{4}x4^{-3}$	$(\sqrt[3]{8})^4$	8x4 ²
√8 ³	$(2^3)^2$	8 ⁷ x8 ⁻⁵	4 ³	$2^{-2}x2^{7}$	64 ⁰	$2^{5}x2^{3}$	$4^{7} \div 2^{3}$
(v64) ³	8 ²	$2^{2}x2^{3}$	$2^{3}x2^{3}$	(2 ³) ³	(∛8) ⁶	$4^{6}x4^{-3}$	$2^{2}x4^{2}$
2 ⁶	(√64) ²	$4^{6}x4^{-2}$	(√16) ³	$(2^2)^4$	$8^3 \div 2^3$	$2^{-3}x2^{7}$	$(2^2)^4$
3 ⁵	2 ⁶ x2 ¹	8 ³	4 ⁵ ÷2 ⁴	(-4) ⁻³	$(2^2)^3$	(√8) ³	$4^6 \div 2^6$
$4^{3}x4^{-3}$	(2 ⁵) ¹	(∛64) ²	2 ³ x8	$2^{-1}x2^{7}$	$(\frac{1}{4})^{-3}$	16 ²	64

Indices and Roots Maze

Short activity

Teacher notes

Content: Evaluating surds

Possible uses:

- As an extension task for more able pupils: e.g. if they haven't yet encountered a negative index
- As a task to identify misconceptions: some common misconceptions are targeted and will lead to an incorrect route
- As a consolidation task

Resource options:

- PowerPoint file for whole class projection
- Worksheet for individual pupils

Answers

	$(2^3)^2$	8 ⁷ x8 ⁻⁵	4 ³				
	8 ²		$2^{3}x2^{3}$		(∛8) ⁶	$4^{6}x4^{-3}$	$2^{2}x4^{2}$
2 ⁶	$(\sqrt{64})^2$		$(\sqrt{16})^3$		$8^3 \div 2^3$		
			$4^{5} \div 2^{4}$		$(2^2)^3$		
			2 ³ x8	$2^{-1}x2^{7}$	$(\frac{1}{4})^{-3}$		

NB there are a few other expressions on the grid that are also equivalent to 2⁶ but none are connected to the route as a 'legal' move.