

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$
$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{2!}x^{3} + \dots + x^{n}$$

3!

2!

I + nx +

A	The coefficient of x^2 in the expansion of $(3 + 4x)^3$	
B	The coefficient of x^3 in the expansion of $(2 - 5x)^4$	
C	The coefficient of x^5 in the expansion of $(1+\frac{1}{2}x)^6$	
	The coefficient of x^3 in the expansion of $(1-\frac{3}{4}x)^4$	
E	Given that the fourth term in the expansion of $(1 + kx)^8$ is $12096x^3$, find the value of k	
F	Given that the coefficient of x^4 in the binomial expansion of $(a - 3x)^5$ is 810, find the value of a	
G	Given that the coefficient of x^2 in the binomial expansion of $(1+2x)^n$ is 760, find the positive value of n	

THE KEY CODE TO THE LOCK IS BDF - ACEG

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$
$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots + x^{n}$$

A	The coefficient of x^2 in the expansion of $(3 + 4x)^3$	144
B	The coefficient of x^3 in the expansion of $(2 - 5x)^4$	-1000
C	The coefficient of x^5 in the expansion of $(1+\frac{1}{2}x)^6$	<u>3</u> 16
	The coefficient of x^3 in the expansion of $(1-\frac{3}{4}x)^4$	<u> </u>
E	Given that the fourth term in the expansion of $(1 + kx)^8$ is $12096x^3$, find the value of k	6
F	Given that the coefficient of x^4 in the binomial expansion of $(a - 3x)^5$ is 810, find the value of a	2
G	Given that the coefficient of x^2 in the binomial expansion of $(1+2x)^n$ is 760, find the positive value of n	20

THE KEY CODE TO THE LOCK IS 135