The graph below shows the function $f(x)$:

Task one

On separate axes similar to the ones shown above, sketch the graph of the following functions. For each one, state the transformation that has occurred from the original graph.
I. $f(x)+1$
2. $f(x+1)$
3. $2 f(x)$
4. $f(2 x)$
5. $-f(x)$
6. $f(-x)$
7. $f(x)-2$
8. $\quad f(1 / 2 x)$
9. $f(x-2)$
10. $1 / 2 f(x)$

Task two

Match up the following statements to create full sentences that are true when $\mathbf{k} \boldsymbol{>} \mathbf{0}$. Use your graphs from task one to help.

Adding k outside the brackets ...

Adding k inside the brackets ...

Multiplying the whole function by k...

Multiplying x by $k .$.
... stretches the graph along the x-axis by scale factor $1 / k$ (or compresses by scale factor $k)$.
... shifts the graph up the \boldsymbol{y}-axis by k units.
... shifts the graph left on the x-axis by k units.
... stretches the graph along the \boldsymbol{y}-axis by scale factor k.

Answers

Task one

I.
$f(x)+1$

Translation, I unit up
3.

Vertical stretch, scale factor 2
5.
$-f(x)$

Reflection in the x -axis
7.

Translation, 2 units down
2.

Translation, I unit left
4.
$f(2 x)$

Horizontal stretch, scale factor $1 / 2$
6.
$f(-x)$

Reflection in the y-axis
8.

Horizontal stretch, scale factor 2

9

10.

Task two

When $\mathrm{k}>0$:

Adding k outside the brackets ...

Adding k inside the brackets ...

Multiplying the whole function by k...

Multiplying x by k...
... shifts the graph up the \mathbf{y}-axis by k units.
... shifts the graph left on the x-axis by k units.
... stretches the graph along the \boldsymbol{y}-axis by scale factor k.
... stretches the graph along the x-axis by scale factor $1 / k$ (or compresses by scale factor k).

