Transformations - Past Edexcel Exam Questions

1. .

Figure 1:

Figure 1 shows a sketch of the curve with equation $y=f(x)$. The curve crosses the x-axis at the points $(2,0)$ and $(4,0)$. The minimum point on the curve is $P(3,-2)$.
In separate diagrams, sketch the curve with equation
(a) $y=-f(x)$,
(b) $y=f(2 x)$.

On each diagram, give the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation.

Question 6 - Jan 2005
2. Figure 2 shows a sketch of the curve with equation $y=f(x)$. The curve passes through the origin O and through the point $(6,0)$. The maximum point on the curve is $(3,5)$.
On separate diagrams, sketch the curve with equation
(a) $y=3 f(x)$
(b) $y=f(x+2)$

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.

Figure 2:

3. .

Figure 3:

Figure 3 shows a sketch of the curve with equation $y=f(x)$. The curve passes through the points $(0,3)$ and $(4,0)$ and touches the x-axis at the point $(1,0)$.
On separate diagrams, sketch the curve with equation
(a) $y=f(x+1)$,
(b) $y=2 f(x)$,
(c) $y=f\left(\frac{1}{2} x\right)$.

On each diagram show clearly the coordinates of all the points at which the curve meets the axes.

Question 6 - Jan 2006
4. Given that

$$
f(x)=\frac{1}{x}, \quad x \neq 0
$$

(a) sketch the graph of $y=f(x)+3$ and state the equations of the asymptotes. [4
(b) Find the coordinates of the point where $y=f(x)+3$ crosses a coordinate axes.

Question 3 - Jan 2007
5. .

Figure 4:

Figure 4 shows a sketch of the curve with equation $y=\frac{3}{x}, x \neq 0$.
(a) On a separate diagram, sketch the curve with equation $y=\frac{3}{x+2}, x \neq-2$, showing the coordinates of any point at which the curve crosses a coordinate axis.
(b) Write down the equations of the asymptotes of the curve in part (a).
6.

Figure 5:

Figure 5 shows a sketch of the curve with equation $y=f(x)$. The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$. The maximum point on the curve is $(2,5)$.

In separate diagrams, sketch the curves with the following equations. On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.
(a) $y=2 f(x)$,
(b) $y=f(-x)$

The maximum point on the curve with equation $y=f(x+a)$ is on the y-axis.
(c) Write down the value of the constant a.

Question 6 - Jan 2008
7. Figure 6 shows a sketch of the curve with equation $y=f(x)$. The curve passes through the point $(0,7)$ and has a minimum at $(7,0)$.

On separate diagrams, sketch the curve with equation
(a) $y=f(x)+3$,
(b) $y=f(2 x)$.

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the y-axis.

Figure 6:

8. The curve C has equation $y=\frac{3}{x}$ and the line l has equation $y=2 x+5$.
(a) Sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes.
(b) Find the coordinates of the points of intersection of C and l.

Question 6 - Jun 2008
9. .

Figure 7:

Figure 7 shows a sketch of the curve C with equation $y=f(x)$. There is a maximum at $(0,0)$, a minimum at $(2,-1)$ and C passes through $(3,0)$.
On separate diagrams, sketch the curve with equation
(a) $y=f(x+3)$,
(b) $y=f(-x)$.

On each diagram, show clearly the coordinates of the maximum point, the minimum point and any points of intersection with the x-axis.

Question 5 - Jan 2009

10. .

Figure 8:

Figure 8 shows a sketch of part of the curve with equation $y=f(x)$.
The curve has a maximum point $(-2,5)$ and an asymptote $y=1$, as shown in Figure 8 . On separate diagrams, sketch the curve with equation
(a) $y=f(x)+2$
(b) $y=4 f(x)$
(c) $y=f(x+1)$

On each diagram, show clearly the coordinates of the maximum point and the equation of the asymptote.
11. .

Figure 9:

Figure 9 shows a sketch of the curve with equation $y=f(x)$. The curve has a maximum point A at $(-2,3)$ and a minimum point at $(3,-5)$.

On separate diagrams sketch the curve with equation
(a) $y=f(x+3)$,
(b) $y=2 f(x)$.

On each diagram show clearly the coordinates of the maximum and minimum points.

The graph of $y=f(x)+a$ has a minimum at $(3,0)$, where a is a constant.
(c) Write down the value of a.

Question 6 - May 2010
12. Figure 10 shows a sketch of the curve with equation $y=f(x)$ where

$$
f(x)=\frac{x}{x-2}, \quad x \neq 2
$$

Figure 10:

The curve passes through the origin and has two asymptotes, with equation $y=1$ and $x=2$, as shown in Figure 1.
(a) In the space below, sketch the curve with equation $y=f(x-1)$ and state the equations of the asymptotes of this curve.

(b) Find the coordinates of the points where the curve with equation $y=f(x-1)$ crosses the coordinate axes.
13. Figure 11 shows a sketch of the curve C with equation $y=f(x)$.

The curve C passes through the origin and through $(6,0)$.
The curve C has a minimum at the point $(3,-1)$.

Figure 11:

On separate diagrams, sketch the curve with equation
(a) $y=f(2 x)$,
(b) $y=-f(x)$,
(c) $y=f(x+p)$, where p is a constant and $0<p<3$.

On each diagram show the coordinates of any points where the curve intersects the x-axis and of any minimum or maximum points.

Question 8 - May 2011
14. Figure 12 shows a sketch of the curve C with equation $y=f(x)$, where

$$
f(x)=x^{2}(9-2 x)
$$

There is a minimum at the origin, a maximum at the point $(3,27)$ and C cuts the x-axis at the point A.
(a) Write down the coordinates of the point A.
(b) On separate diagrams sketch the curve with equation
i. $y=f(x+3)$,
ii. $y=f(3 x)$.

On each sketch you should indicate clearly the coordinates of the maximum points and any points where the curves cross or meet the coordinate axes.

Figure 12:

The curve with equation $y=f(x)+k$, where k is a constant, has a maximum point at $(3,10)$.
(c) Write down the value of k.

Question 10 - May 2012
15. .

Figure 13:

Figure 13 shows a sketch of the curve with equation $y=\frac{2}{x}, x \neq 0$.
The curve C has equation $y=\frac{2}{x}-5, x \neq 0$, and the line l has equation $y=4 x+2$.
(a) Sketch and clearly label the graphs of C and l on a single diagram.

On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes.
(b) Write down the equations of the asymptotes of the curve C.
(c) Find the coordinates of the points of intersection of $y=\frac{2}{x}-5$ and $y=4 x+2$.

Question 6 - Jan 2013
16. Figure 14 shows a sketch of the curve with equation $y=f(x)$ where

$$
f(x)=(x+3)^{2}(x-1), \quad x \in \mathbb{R}
$$

Figure 14:

The curve crosses the x-axis at $(1,0)$, touches it at $(-3,0)$ and crosses the y-axis at $(0,-9)$.
(a) In the space below, sketch the curve C with equation $y=f(x+2)$ and state the coordinates of the points where the curve C meets the x-axis.

(b) Write down an equation of the curve C.
(c) Use your answer to part (b) to find the coordinates of the point where the curve C meets the y-axis.
\qquad
17. .

Figure 15:

Figure 1 shows a sketch of the curve C with equation

$$
y=\frac{1}{x}+1, \quad x \neq 0
$$

The curve C crosses the x-axis at the point A.
(a) State the x coordinate of the point A.

The curve D has equation $y=x^{2}(x-2)$, for all real values of x.
(b) A copy of Figure 1 is shown below.

On this copy, sketch a graph of curve D.
Show on the sketch the coordinates of each point where the curve D crosses the coordinate axes.

(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$
x^{2}(x-2)=\frac{1}{x}+1
$$

Solutions

1. (a).

(b)

2. (a).

(b) .

3. (a).

(b) .

(c).

4. (a) Asymptotes: $x=0, y=3$.

(b) $\left(-\frac{1}{3}, 0\right)$
5. (a)

(b) Asymptotes: $x=-2, y=0$
6. (a)

(b)

(c) $a=2$
7. (a).

(b) .

8. (a) .

(b) $\left(\frac{1}{2}, 6\right),(-3,-1)$
9. (a)

(b) .

10. (a).

(b) .

(c) .

11. (a)

(b)

(c) $a=5$.
12. (a).

(b) $\left(\frac{1}{3}, 0\right)$
13. (a) .

(b)

(c) .

14. (a) $x=\frac{9}{2}$
(b) i. .

ii. .

(c) $k=-17$.
15. (a)

(b) $x=0, y=-5$
(c) $\left(\frac{1}{4}, 3\right),(-2,-6)$
16. (a)

(b) $(x+5)^{2}(x+1)$
(c) $(0,25)$
17. (a) $x=-1$
(b) .

(c) There are 2 solutions since the graphs intersect twice.
