Starter: Length, Gradients \& Mid-Points

$A(-2,9)$ and $B(3,-3)$
 Mid-Point?

Gradient?
Length AB?
Perpendicular gradient?

Introduction to Coordinate Geometry Crib Sheet

Finding the gradient of a line

To find the gradient, m, of the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ use \ldots

Gradient, $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Finding the length of a line

To find the length of the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ use \ldots

Length $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Finding the midpoint of a line

To find the midpoint of the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ use \ldots

Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Finding the perpendicular gradient to a line

To find the perpendicular gradient, m_{1} to the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you need to find the gradient of the line itself, m. Then use the fact that:

$$
m \cdot m_{1}=-1
$$

(i.e. find the negative reciprocal)

The coordinates $\mathrm{A}(-3,-3), \mathrm{B}(-1,2)$, $C(4,4)$ and $D(2,-1)$ are plotted on a graph.
Prove that they form a rhombus.

Do

Find the area of the rhombus formed by joining the points A, B, C and D.

Think

How have you shown the quadrilateral is definitely a rhombus and not a square?

Think...

How could drawing the diagonals on a sketch help you?

Prove that the diagonals of the rhombus are perpendicular bisectors of each other.

Is it possible to draw one circle which passes through all four

Justify . . .

 coordinates? Explain your answerJeLlyaths
cir

What is the product of two perpendicular gradients?

JeclyathS

Think...

What is the least you would need to do in order to prove four coordinates formed a trapezium?

Task: Equations of Lines

- Pick three coordinates
- Find the equations of the perpendicular bisectors for each pair of coordinates
- Find where these three lines intersect
-What do you notice?

