A-level FURTHER MATHS

Further Vectors \& Work, energy and power

Specification content coverage: F1, F3, F4, F6, MC1, MC2, MC3, MC4, MC7

In this test you will be assessed on:

- understanding and using the vector and Cartesian forms of a straight line in three dimensions
- understanding and using the vector and Cartesian forms of a plane in three dimensions
- understanding and using the scalar product to find angles between lines and planes
- finding the perpendicular distance between a line and a plane and the perpendicular distance from a point to a line
- finding intersection points.
- finding the work done by a force acting in the direction of motion or directly opposing the motion
- use of gravitational potential energy and kinetic energy in conservation of energy problems
- use of Hooke's Law including use of the modulus of elasticity.

The test comprises four sections.
The questions in section A will test you on the basics of the Further Vectors topic. Those in section B are Further Vector questions requiring a bit more thinking.
The questions in section A will test you on the basics of the Work, energy and power topic. Those in section B are Work, energy and power questions requiring a bit more thinking.

Section A: The basics

1 (a) Find the vector equation of the line through the points $(2,3,-1)$ and $(1,-1,0)$
[2 marks]
1 (b) Show that the line in (a) and (b) intersects with the line $\mathbf{r}=\left(\begin{array}{c}-6 \\ -2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ and find the point of intersection.

Find the acute angle between the lines

$$
\mathbf{r}=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) \text { and } \mathbf{r}=\left(\begin{array}{l}
1 \\
6 \\
9
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right)
$$

Give your answer to three significant figures.

3 The line l has equation $\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}$
The point A has coordinates (1,2,-1)

3 (a) Write down the coordinates of a general point, P, on the line l, using t as the parameter.

3 (b) Find the vector $\overrightarrow{A P}$ in terms of t

3 (c) Hence, find the shortest distance between the point A and the line l

Section B: A bit more thinking

$4 \quad$ The points X and Y have position vectors $\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ respectively relative to a fixed origin O.

4 (a) Use a vector method to find the exact value of $\cos O X Y$

4 (b) Hence, find the area of triangle $O X Y$ in the form $p \sqrt{q}$ where p, q are rational numbers.
[2 marks]
$5 \quad$ The path of a comet is modelled by the line

$$
\mathbf{r}=\left(\begin{array}{c}
7 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)
$$

where one unit represents a distance of one million kilometres.
Earth is positioned at the origin in this model.

5 (a) Find the coordinates of the point of closest approach.

5 (b) Determine whether the comet ever comes within 5 million kilometres of Earth.

6
Show that the shortest distance between the lines with equations

$$
\mathbf{r}_{1}=\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{c}
9 \\
-2 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

is $3 \sqrt{2}$

Section C: The basics

7
A particle of mass 2 kg is raised a vertical distance of 8 m .
Find the work done against gravity.
Circle your answer.
$4 g \mathrm{Nm} \quad 16 \mathrm{Nm} \quad 4 \mathrm{~J} \quad 16 \mathrm{~J}$
[1 mark]
8 A car of mass 850 kg reduces speed from $25 \mathrm{~m} \mathrm{~s}^{-1}$ to $10 \mathrm{~m} \mathrm{~s}^{-1}$.
Find the decrease in kinetic energy of the car.
[2 marks]

9 A particle of mass 8 kg which is initially at rest is pulled along a smooth, horizontal surface by a horizontal force of magnitude 20 N .

Using energy considerations, find the speed of the particle when it has been pulled along a distance of 15 m .
Give your answer as a simplified surd.

10 A stone of mass 0.2 kg is dropped from a height, $h \mathrm{~m}$. The stone hits the ground with speed $45 \mathrm{~m} \mathrm{~s}^{-1}$.

10 (a) Find h as a function of g, using the principle of conservation of energy.
[2 marks]
10 (b) State two assumptions made.
[1 mark]

Section D: A bit more thinking

In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
A particle of mass 0.8 kg is attached to one end of a light elastic spring of natural length 2.4 m and modulus of elasticity 32 N .

The other end of the spring is attached to a fixed point, O, at the top of a rough plane inclined at an angle θ to the horizontal, where $\tan \theta=\frac{3}{4}$. The coefficient of friction between the particle and the plane is 0.25 .
The particle is held at rest on the plane at a point 1 m from O, down the line of greatest slope of the plane. It is then released from rest and moves down the slope.

11 (a) Find the initial acceleration of the particle.

11 (b) What is the significance of the spring being light?

12 The resistance to motion of a car moving with speed $v \mathrm{~m} \mathrm{~s}^{-1}$ is given by $(350+2 v)$ N.
Given that the engine of the car is working at 10 kW , find the maximum speed of the car as it travels along a horizontal road.

13 In this question use $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.
A boy and his skateboard have a combined mass of 60 kg . The boy descends a slope inclined at 15° to the horizontal, starting from rest.
At the bottom of the slope, the ground becomes horizontal for 18 m , before rising at 10° to the horizontal.

At the point where the boy has travelled 25 m up the slope, his speed is $5 \mathrm{~m} \mathrm{~s}^{-1}$. He is subject to a constant resistance of magnitude 20 N throughout the motion.

By modelling the boy and his skateboard as a particle, and using energy considerations, find the distance the boy travels down the slope.

