

A-level FURTHER MATHS

Further Vectors & Work, energy and power

Specification content coverage: F1, F3, F4, F6, MC1, MC2, MC3, MC4, MC7

In this test you will be assessed on:

- understanding and using the vector and Cartesian forms of a straight line in three dimensions
- understanding and using the vector and Cartesian forms of a plane in three dimensions
- understanding and using the scalar product to find angles between lines and planes
- finding the perpendicular distance between a line and a plane and the perpendicular distance from a point to a line
- finding intersection points.
- finding the work done by a force acting in the direction of motion or directly opposing the motion
- use of gravitational potential energy and kinetic energy in conservation of energy problems
- use of Hooke's Law including use of the modulus of elasticity.

The test comprises four sections.

The questions in section A will test you on the basics of the Further Vectors topic. Those in section B are Further Vector questions requiring a bit more thinking.

The questions in section A will test you on the basics of the Work, energy and power topic. Those in section B are Work, energy and power questions requiring a bit more thinking.

Section A: The basics

1 (a) Find the vector equation of the line through the points (2,3,-1) and (1,-1,0)

[2 marks]

1 (b) Show that the line in (a) and (b) intersects with the line $\mathbf{r} = \begin{pmatrix} -6 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ and find the point of intersection.

[3 marks]

2 Find the acute angle between the lines

$\mathbf{r} = \begin{pmatrix} 2\\2\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 1\\6\\9 \end{pmatrix} + \mu \begin{pmatrix} -1\\2\\4 \end{pmatrix}$

Give your answer to three significant figures.

The line *l* has equation $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+3}{-1}$

[2 marks]

- **3 (a)** Write down the coordinates of a general point, *P*, on the line *l*, using *t* as the parameter.
- **3 (b)** Find the vector \overrightarrow{AP} in terms of t

3

[1 mark]

[1 mark]

3 (c) Hence, find the shortest distance between the point *A* and the line *l*

[4 marks]

Section B: A bit more thinking

- 4 The points X and Y have position vectors $\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} \mathbf{k}$ respectively relative to a fixed origin *O*.
- 4 (a) Use a vector method to find the exact value of cos OXY

[2 marks]

4 (b) Hence, find the area of triangle OXY in the form $p\sqrt{q}$ where p, q are rational numbers.

[2 marks]

5 The path of a comet is modelled by the line

$\mathbf{r} = \begin{pmatrix} 7 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

where one unit represents a distance of one million kilometres. Earth is positioned at the origin in this model.

5 (a) Find the coordinates of the point of closest approach.

[3 marks]

5 (b) Determine whether the comet ever comes within 5 million kilometres of Earth.

[1 mark]

6

Show that the shortest distance between the lines with equations

$\mathbf{r}_{1} = \begin{pmatrix} 3\\0\\-1 \end{pmatrix} + s \begin{pmatrix} 0\\1\\0 \end{pmatrix} \text{ and } \mathbf{r}_{2} = \begin{pmatrix} 9\\-2\\-1 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$

is $3\sqrt{2}$

[5 marks]

Section C: The basics

7	A particle of mass 2 kg is raised a vertical distance of 8 m. Find the work done against gravity. Circle your answer.				
		4g Nm	16 Nm	4 J	16 <i>g</i> J
					[1 mark]
8		A car of mass 850 kg reduces speed from 25 m s ^{-1} to 10 m s ^{-1} . Find the decrease in kinetic energy of the car.			
					[2 marks]
9		A particle of mass 8 kg which is initially at rest is pulled along a smooth, horizontal surface by a horizontal force of magnitude 20 N.			
		Using energy consid pulled along a distar	lerations, find the spe nce of 15 m.	eed of the particle wh	en it has been
		Give your answer as	s a simplified surd.		
					[4 marks]
10		A stone of mass 0.2 with speed 45 m s ⁻¹ .	kg is dropped from a	height, h m. The sto	one hits the ground
10	(a)	Find h as a function	of g , using the princip	ple of conservation o	f energy.
					[2 marks]
10	(b)	State two assumption	ons made.		

[1 mark]

11		In this question use $g = 9.8$ m s ⁻² .
		A particle of mass 0.8 kg is attached to one end of a light elastic spring of natural length 2.4 m and modulus of elasticity 32 N.
		The other end of the spring is attached to a fixed point, <i>O</i> , at the top of a rough plane inclined at an angle θ to the horizontal, where tan $\theta = \frac{3}{4}$. The coefficient of friction between the particle and the plane is 0.25.
		The particle is held at rest on the plane at a point 1 m from <i>O</i> , down the line of greatest slope of the plane. It is then released from rest and moves down the slope.
11	(a)	Find the initial acceleration of the particle.
		[4 marks]
11	(b)	What is the significance of the spring being light?
		[1 mark]
12		The resistance to motion of a car moving with speed $v \text{ m s}^{-1}$ is given by (350 + 2 v) N.
		Given that the engine of the car is working at 10 kW, find the maximum speed of the car as it travels along a horizontal road.
		[4 marks]
13		In this question use $g = 9.81$ m s ⁻² .
		A boy and his skateboard have a combined mass of 60 kg. The boy descends a slope inclined at 15° to the horizontal, starting from rest.
		At the bottom of the slope, the ground becomes horizontal for 18 m, before rising at 10° to the horizontal.
		At the point where the boy has travelled 25 m up the slope, his speed is 5 m s ⁻¹ . He is subject to a constant resistance of magnitude 20 N throughout the motion.
		By modelling the boy and his skateboard as a particle, and using energy considerations, find the distance the boy travels down the slope.

[5 marks]