

A-level FURTHER MATHS

Further vectors & Work, En erg y & Pow er

Mark scheme

Specification content coverage: F1, F3, F4, F6

Question	Solutions	Mark
1 (a)	Finds vector linking the two points, eg $\begin{pmatrix} -1 \\ -4 \\ 1 \end{pmatrix}$	1
	Finds correct line, eg $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -4 \\ 1 \end{pmatrix}$	1 (or equivalent)
	Total	2
1 (b)	$2-\lambda = -6+2\mu$	
	Need to solve $3-4\lambda = -2-\mu$	1
	$\lambda - 1 = 4 - \mu$	
	Solution $\lambda = 2$ and $\mu = 3$	1
	Intersection $(0, -5, 1)$	1
	Total	3
2	$\cos(\theta) = \frac{14}{\sqrt{10}\sqrt{21}}$	1
	Hence $\theta = 15.0$ degrees (or equivalent)	1
	Total	2
3 (a)	P(1+2t,1-2t,-3-t)	1
	Total	1
3 (b)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1+2t\\ 1-2t\\ -3-t \end{pmatrix} - \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix} = \begin{pmatrix} 2t\\ -1-2t\\ -2-t \end{pmatrix}$	1
	Total	1

3 (c)	<i>P</i> is shortest distance from <i>A</i> when $\begin{pmatrix} 2t \\ 1-2t \\ -2-t \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} = 0$	1
	4t + 2 + 4t + 2 + t = 0 $t = -\frac{4}{9}$	1
	$\overrightarrow{AP} = \begin{pmatrix} -\frac{8}{9} \\ -\frac{1}{9} \\ -\frac{14}{9} \end{pmatrix}$	1
	$\left \overline{AP}\right = \sqrt{\left(\frac{8}{9}\right)^2 + \left(\frac{1}{9}\right)^2 + \left(\frac{14}{9}\right)^2} = \frac{\sqrt{261}}{9} = \frac{\sqrt{29}}{3} (=1.80)$	1
	Total	4
4 (a)	$\overrightarrow{OX} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \overrightarrow{YX} = (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) - (2\mathbf{i} + \mathbf{j} - \mathbf{k}) = (-\mathbf{i} + 2\mathbf{j} - \mathbf{k})$	1
	$\cos OXY = \frac{-1+6+2}{\sqrt{14}\sqrt{6}} = \frac{7}{\sqrt{84}}$	1
	Total	2
4 (b)	Area = $\frac{1}{2} \times \sqrt{14} \times \sqrt{6} \times \sqrt{1 - \left(\frac{7}{\sqrt{84}}\right)^2}$	1
	$= \frac{1}{2} \times \sqrt{84} \times \sqrt{\frac{35}{84}} = \frac{1}{2}\sqrt{35} \left(p = \frac{1}{2}, q = 35 \right)$	1 2
	Total	L
5 (a)	Forms equation $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 7+2\lambda \\ -1-\lambda \\ 2+3\lambda \end{pmatrix} = 0$	1
	Solves to find $\lambda = -\frac{3}{2}$	1
	Finds point $\left(4, \frac{1}{2}, -\frac{5}{2}\right)$	1
	Total	3
5 (b)	Finds distance $\frac{3\sqrt{10}}{2} \approx 4.74$ and concludes yes	1
	Total	1
	·	•

6	If A is a point on \mathbf{r}_1 , and B is a point on \mathbf{r}_2 ,	
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 9+t \end{pmatrix}$	
	$\overrightarrow{OA} = \begin{pmatrix} 3\\s\\-1 \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 9+t\\-2-2t\\-1+t \end{pmatrix}$	1
	$\begin{pmatrix} -1 \end{pmatrix}$ $\begin{pmatrix} -1+t \end{pmatrix}$	
	$\begin{pmatrix} 9+t \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 6+t \end{pmatrix}$	
	$\overrightarrow{AB} = \begin{vmatrix} 2 & 2t \\ -2 & -2t \end{vmatrix} = \begin{vmatrix} 2 & 2t \\ -2 & -2t \end{vmatrix} = \begin{vmatrix} 2t & -2t \\ -2 & -2t \end{vmatrix} = \begin{vmatrix} 2t & -2t \\ -2t & -2t \end{vmatrix}$	1
	$\overrightarrow{AB} = \begin{pmatrix} 9+t \\ -2-2t \\ -1+t \end{pmatrix} - \begin{pmatrix} 3 \\ s \\ -1 \end{pmatrix} = \begin{pmatrix} 6+t \\ -2-2t-s \\ t \end{pmatrix}$	
	$\begin{pmatrix} -1+i \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} i \end{pmatrix}$	
	AB is perpendicular to \mathbf{r}_1 so	
	$\begin{pmatrix} 6+t \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	$ \begin{pmatrix} 6+t \\ -2-2t-s \\ t \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 $	
	$\begin{pmatrix} t \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	-2-2t-s=0	1
	\overrightarrow{AB} is perpendicular to \mathbf{r}_2 so	
	$ \begin{pmatrix} 6+t \\ -2-2t-s \\ t \end{pmatrix} \bullet \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0 $	
	$\begin{pmatrix} t \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	
	6+t+4+4t+2s+t=0	
	10 + 6t + 2s = 0	
	Solving gives $t = -3$, $s = 4$	1
	$\overrightarrow{AB} = \begin{vmatrix} 0 \end{vmatrix}$	
	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix}$	
	$\left \overrightarrow{AB}\right = 3\sqrt{2}$	4
		1
	Total	5
7	16g J	1
0		1
8	Initial KE = $\frac{1}{2} \times 850 \times 25^2 = (265\ 625\ J)$	
	Final KE = $\frac{1}{2} \times 850 \times 10^2 = (42\ 500\ J)$	1
	Decrease in KE = 223 125 J	1
	Total	2
9	WD by the force = $20 \times 15 = 300 \text{ J}$	1
	KE gained = $\frac{1}{2} \times 8 \times v^2 = 4v^2$	1
	–	1
	$300 = 4v^2$	-
	$v = 5\sqrt{3} \text{ ms}^{-1}$	1

	Total	4
10 (a)	PE lost = 0.2gh	-
	KE gained = $\frac{1}{2} \times 0.2 \times 45^2$	
	$0.2gh = \frac{1}{2} \times 0.2 \times 45^2$ (= 202.5)	1
	$h = \frac{2025}{2}$	
	$h = \frac{1}{2g}$	1
	Total	2
10 (b)	Model stone as a particle, ignore air resistance	1
	Total	1
11 (a)	$T = \frac{32 \times 1.4}{2.4} = \frac{56}{3} N$	1
	$R = 0.8g \cos \theta$	
	$=0.8g \times \frac{4}{5}$	
	= 6.272 N	1
	$0.8g \sin \theta + T - 0.25R = 0.8a$	
	$7.84 \times \frac{3}{5} + \frac{56}{3} - 0.25 \times 6.272 = 0.8a$	1
	$a = 27.2533 = 27 \text{ m s}^{-2} (2 \text{ sf})$	1
	Total	4
11 (b)	Negligible mass – does not contribute to weight/force	
	pushing particle down slope. So <i>a</i> is less.	1
	Total	1
12	Driving force = $\frac{10000}{1000}$	1
	V	1
	$\frac{10000}{v} = 350 + 2v$	1
	V	
	$10000 = 350v + 2v^2$	
	$v^2 + 175v - 5000 = 0$	
	(v-25)(v+200)=0	
	<i>v</i> = 25, -200	1 (both roots needed)
	Max speed = 25 m s^{-1}	1 (+ other root
	Total	rejected)
12	$\frac{1}{1} \times 60 \times 5^2 (-750 \text{ J})$	4
13	KE gained = $\frac{1}{2} \times 60 \times 5^2$ (= 750 J)	
	PE lost = $60g (x \sin 15 - 25 \sin 10)$ (= 152.3408 x - 2555.2329)	1
	WD by resistance = $20 \times (x + 18 + 25)$	
	= 20x + 860	1
	20x + 860 = 152.3408x - 2555.2329 - 750 (4165 2329 - 132 3408x)	1
	(4165.2329 = 132.3408 <i>x</i>) Distance down the slope = 31.5 m (3 sf)	1
	Total	5
L		Grand Total: 50 Marks

Grand Total: 50 Marks