A-level
 FURTHER MATHS

Further vectors \& Work, En erg y \& Pow er
 Mark scheme

Specification content coverage: F1, F3, F4, F6

Question	Solutions	Mark
1 (a)	Finds vector linking the two points, eg $\left(\begin{array}{c}-1 \\ -4 \\ 1\end{array}\right)$ Finds correct line, eg $\mathbf{r}=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ -4 \\ 1\end{array}\right)$	1 (or equivalent)
	Total	2
1 (b)	$2-\lambda=-6+2 \mu$ Need to solve $\begin{aligned} & 3-4 \lambda=-2-\mu \\ & \lambda-1=4-\mu \end{aligned}$ Solution $\lambda=2$ and $\mu=3$ Intersection ($0,-5,1$)	1 1
	Total	3
2	$\cos (\theta)=\frac{14}{\sqrt{10} \sqrt{21}}$ Hence $\theta=15.0$ degrees (or equivalent)	1
	Total	2
3 (a)	$P(1+2 t, 1-2 t,-3-t)$	1
	Total	1
3 (b)	$\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=\left(\begin{array}{c}1+2 t \\ 1-2 t \\ -3-t\end{array}\right)-\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}2 t \\ -1-2 t \\ -2-t\end{array}\right)$	1
	Total	1

3 (c)	P is shortest distance from A when $\left(\begin{array}{c}2 t \\ 1-2 t \\ -2-t\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -2 \\ -1\end{array}\right)=0$ $\begin{aligned} & 4 t+2+4 t+2+t=0 \\ & t=-\frac{4}{9} \end{aligned}$ $\overrightarrow{A P}=\left(\begin{array}{c} -\frac{8}{9} \\ -\frac{1}{9} \\ -\frac{14}{9} \end{array}\right)$ $\|\overrightarrow{A P}\|=\sqrt{\left(\frac{8}{9}\right)^{2}+\left(\frac{1}{9}\right)^{2}+\left(\frac{14}{9}\right)^{2}}=\frac{\sqrt{261}}{9}=\frac{\sqrt{29}}{3}(=1.80)$	1 1 1
	Total	4
4 (a)	$\begin{aligned} & \overrightarrow{O X}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+ \\ & \overrightarrow{Y X}=(\mathbf{i}+3 \mathbf{j}-2 \mathbf{k})-(2 \mathbf{i}+\mathbf{j}-\mathbf{k})=(-\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\ & \cos O X Y=\frac{-1+6+2}{\sqrt{14} \sqrt{6}}=\frac{7}{\sqrt{84}} \end{aligned}$	1
	Total	2
4 (b)	$\begin{aligned} & \text { Area }=\frac{1}{2} \times \sqrt{14} \times \sqrt{6} \times \sqrt{1-\left(\frac{7}{\sqrt{84}}\right)^{2}} \\ & =\frac{1}{2} \times \sqrt{84} \times \sqrt{\frac{35}{84}}=\frac{1}{2} \sqrt{35}\left(p=\frac{1}{2}, q=35\right) \end{aligned}$	1 1
	Total	2
5 (a)	Forms equation $\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}7+2 \lambda \\ -1-\lambda \\ 2+3 \lambda\end{array}\right)=0$ Solves to find $\lambda=-\frac{3}{2}$ Finds point $\left(4, \frac{1}{2},-\frac{5}{2}\right)$	1 1
	Total	3
5 (b)	Finds distance $\frac{3 \sqrt{10}}{2} \approx 4.74$ and concludes yes	1
	Total	1

6	If A is a point on \mathbf{r}_{1}, and B is a point on \mathbf{r}_{2}, $\begin{aligned} & \overrightarrow{O A}=\left(\begin{array}{c} 3 \\ s \\ -1 \end{array}\right) \text { and } \overrightarrow{O B}=\left(\begin{array}{c} 9+t \\ -2-2 t \\ -1+t \end{array}\right) \\ & \overrightarrow{A B}=\left(\begin{array}{c} 9+t \\ -2-2 t \\ -1+t \end{array}\right)-\left(\begin{array}{c} 3 \\ s \\ -1 \end{array}\right)=\left(\begin{array}{c} 6+t \\ -2-2 t-s \\ t \end{array}\right) \end{aligned}$ $\overrightarrow{A B}$ is perpendicular to r_{1} so $\left(\begin{array}{c} 6+t \\ -2-2 t-s \\ t \end{array}\right) \cdot\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)=0$ $-2-2 t-s=0$ $\overrightarrow{A B}$ is perpendicular to r_{2} so $\begin{aligned} & \left(\begin{array}{c} 6+t \\ -2-2 t-s \\ t \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -2 \\ 1 \end{array}\right)=0 \\ & 6+t+4+4 t+2 s+t=0 \\ & 10+6 t+2 s=0 \end{aligned}$ Solving gives $t=-3, s=4$ $\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} 3 \\ 0 \\ -3 \end{array}\right) \\ & \|\overrightarrow{A B}\|=3 \sqrt{2} \end{aligned}$	1 1 1 1 1 1 1 1
	Total	5
7	16 g J	1
	Total	1
8	$\begin{aligned} & \text { Initial } \mathrm{KE}=\frac{1}{2} \times 850 \times 25^{2}=(265625 \mathrm{~J}) \\ & \text { Final } \mathrm{KE}=\frac{1}{2} \times 850 \times 10^{2}=(42500 \mathrm{~J}) \end{aligned}$	1
	Decrease in KE = 223125 J	1
	Total	2
9	WD by the force $=20 \times 15=300 \mathrm{~J}$ KE gained $=\frac{1}{2} \times 8 \times v^{2}=4 v^{2}$ $300=4 v^{2}$	1 1 1
	$v=5 \sqrt{3} \mathrm{~ms}^{-1}$	1

	Total	4
10 (a)	$\begin{aligned} & \text { PE lost }=0.2 g h \\ & \text { KE gained }=\frac{1}{2} \times 0.2 \times 45^{2} \\ & 0.2 g h=\frac{1}{2} \times 0.2 \times 45^{2} \quad(=202.5) \end{aligned}$	1
	$h=\frac{2025}{2 g}$	1
	Total	2
10 (b)	Model stone as a particle, ignore air resistance	1
	Total	1
11 (a)	$\mathrm{T}=\frac{32 \times 1.4}{2.4}=\frac{56}{3} \mathrm{~N}$	1
	$\begin{aligned} \mathrm{R} & =0.8 g \cos \theta \\ & =0.8 g \times \frac{4}{5} \\ & =6.272 \mathrm{~N} \end{aligned}$	1
	$\begin{aligned} & 0.8 g \sin \theta+\mathrm{T}-0.25 \mathrm{R}=0.8 a \\ & 7.84 \times \frac{3}{5}+\frac{56}{3}-0.25 \times 6.272=0.8 a \end{aligned}$	1
	$a=27.2533 \ldots=27 \mathrm{~m} \mathrm{~s}^{-2}$ (2 sf)	1
	Total	4
11 (b)	Negligible mass - does not contribute to weight/force pushing particle down slope. So a is less.	1
	Total	1
12	Driving force $=\frac{10000}{v}$	1
	$\frac{10000}{v}=350+2 v$	1
	$\begin{aligned} & 10000=350 v+2 v^{2} \\ & v^{2}+175 v-5000=0 \\ & (v-25)(v+200)=0 \\ & v=25,-200 \\ & \hline \end{aligned}$	1 (both roots needed)
	Max speed $=25 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & 1 \text { (+ other root } \\ & \text { rejected) } \\ & \hline \end{aligned}$
	Total	4
13	KE gained $=\frac{1}{2} \times 60 \times 5^{2}(=750 \mathrm{~J})$	1
	$\begin{aligned} \hline \text { PE lost } & =60 g(x \sin 15-25 \sin 10) \\ & (=152.3408 \ldots x-2555.2329 \ldots) \end{aligned}$	1
	$\begin{aligned} \hline \text { WD by resistance } & =20 \times(x+18+25) \\ & =20 x+860 \end{aligned}$	1
	$\begin{aligned} & 20 x+860=152.3408 x-2555.2329-750 \\ & (4165.2329=132.3408 x) \end{aligned}$	1
	Distance down the slope $=31.5 \mathrm{~m}(3 \mathrm{sf})$	1
	Total	5

