AS and A-level Y ear 1 MATHS

B inomial ex pansions and review of previous topics Mark sch eme

Specification content coverage: D1, sections A-C

Question	Solutions	Mark
1	$2^{8}+{ }^{8} C_{1} \times 2^{7} \times-3 x+{ }^{8} C_{2} \times 2^{6} \times(-3 x)^{2}+{ }^{8} C_{3} \times 2^{5} \times(-3 x)^{3}$ Correct substitution into formula for at least two terms All terms $256-3072 x+16128 x^{2}-48384 x^{3}$ At least two correct terms All correct terms	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1
2	Use of formula correctly $\begin{aligned} & { }^{11} C_{5} \times 2^{6} \times\left(\frac{1}{2} x\right)^{5} \\ & 462 \times 64 \times \frac{1}{32} x^{5} \\ & 924 x^{5} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
3 (a)	$\begin{aligned} & \left(x+\frac{7}{2}\right)^{2}-\frac{169}{4} \\ & \min \left(-7 / 2,-\frac{169}{4}\right) \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
3 (b)	Sketch with intercepts at $y=-30, x=-10$ and $x=3$ and min point in correct quadrant.	4 (1 for each intercept and correct shape in quadrant)

4 (a)	$\begin{aligned} & \mathrm{p}(-3)=(-3)^{3}+9(-3)^{2}+27(-3)+27 \\ & =0 \text { therefore }(x+3) \text { is a factor } \end{aligned}$	1 for substitution 1 for correct statement
4 (b)	$(x+3)^{3}$	1 correct method to find quotient 1 correct solution complete (both marks for seeing $(x+3)^{3}$ directly
4(c)	$\begin{array}{ll}\text { Translation } & (5 x \text {-direction) } \\ & (2 y \text {-direction) }\end{array}$	1 translation 1 for each element of vector
5 (a)	$8+36 x+54 x^{2}+27 x^{3}$	1 correct substitution 1 correct terms
5 (b)	Attempt to find second and third term of expansion $-\frac{5}{x} \text { and } \frac{10}{x^{2}}$ Multiply by $54 x^{2}$ and $27 x^{3}$ respectively $36(x)-270(x)+270(x)=36(x)$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
6	Substitution of equation for line into that for circle $\begin{aligned} & ((3 x+2)-1)^{2}+(x-3)^{2}=25 \\ & 9 x^{2}+6 x+1+x^{2}-6 x+9=25 \\ & 2 x^{2}=3 \\ & x= \pm \sqrt{\frac{3}{2}} \end{aligned}$ States that the line intersects the circle at two distinct points, therefore it cannot be a tangent.	1 2 1 1

Rationale

It is assumed that students are proficient at using calculator to solve quadratics/simultaneous equations.

21 marks scaffolded, basic skills assessed.
11 marks applying, including some basic proof and some more advanced problem-solving.

