AS and A-level MATHS

Coordinate geometry and circles
Mark sch eme

Specification content coverage: C1, C2

Question	Solutions	Mark
$\mathbf{1}$	$y-(-1)=3(x-4)$	1
2 (a)	$3 y=-2 x+7$ $y=-\frac{2}{3} x+\frac{7}{3}$ gradient $=-\frac{2}{3}$ y-intercept $=\frac{7}{3}$ x-intercept $=\frac{7}{2}$	1
2 (b)	parallel so gradient $=-\frac{2}{3}$ $\left(y-y_{1}\right)=-\frac{2}{3}\left(x-x_{1}\right)$ OE: $y=-\frac{2}{3} x+c$ passes through the point $(3,5)$ $(y-5)=-\frac{2}{3}(x-3)$ OE: $y=-\frac{2}{3} x+7$	1
2 (c)	$2 x+3(2 x+1)-7=0$ $8 x-4=0$ $x=\frac{1}{2}$ OE: $y=2$	1

3 (a)	gradient $P Q=\frac{4}{3}$ gradient $Q R=-\frac{3}{4}$	1
$\frac{4}{3} \times-\frac{3}{4}=-1$ hence $P Q$ and $Q R$ are perpendicular	1	
3 (b)	$\sqrt{(5-1)^{2}+(3-6)^{2}}$ $\sqrt{25}$ 5	Radius $=8$ $(x-2)^{2}+(y+5)^{2}=8^{2}$
$\mathbf{4}$	$x^{2}+4 x+y^{2}-6 y-8=0$ $(x+2)^{2}-4+(y-3)^{2}-9-8=0$ $(x+2)^{2}+(y-3)^{2}=21$ Centre $(-2,3)$ and radius $\sqrt{21}$	1
$\mathbf{5}$	gradient $A B=\frac{2}{3}$ gradient $B C=-\frac{3}{2}$ Since $A B$ and $B C$ are perpendicular, triangle $A B C$ forms a right-angled triangle. Alternative method: Find lengths $A B, B C$ and $A C$ and show that the triangle satisfies Pythagoras Theorem Using the fact that an angle in a semi-circle is a right angle it can be concluded that $A C$ is a diameter.	1

7	Since $A B$ is a chord of the circle the perpendicular bisector will be an equation of a diameter gradient $A B=-\frac{3}{4}$ gradient of perpendicular line $=\frac{4}{3}$ equation of perpendicular line $\left(y-y_{1}\right)=\frac{4}{3}\left(x-x_{1}\right)$ OE: $y=\frac{4}{3} x+c$ midpoint of $A B=\left(3, \frac{5}{2}\right)$ Therefore, equation of a diameter $\left(y-\frac{5}{2}\right)=\frac{4}{3}(x-3)$ OE: $y=\frac{4}{3} x-\frac{3}{2}$	1
8	$x^{2}+3 x+k^{2}+2 k-\frac{3}{4}=0$ If the line does not intersect the circle, then $b^{2}-4 a c<0$ $3^{2}-4 \times 1 \times\left(k^{2}+2 k-\frac{3}{4}\right)<0$ $9-4 k^{2}-8 k+3<0$ $-4 k^{2}-8 k+12<0$ $4 k^{2}+2 k-3>0$ $(k-1)(k+3)>0$ $k<-3$ or $k>1$ Alternative method: Find the centre and radius of the circle and then consider which horizontal lines would intersect.	1

Rationale

19 marks scaffolded, with basic skill assessed
13 marks applying, including some more advanced problem-solving using skills from prior topics

