

AS and A-level MATHS

Coordinate geometry and circles

Mark sch eme

Specification content coverage: C1, C2

Question	Solutions	Mark
1	y - (-1) = 3(x - 4)	1
2 (a)	3y = -2x + 7	
	2 7	
	$y = -\frac{1}{3}x + \frac{1}{3}$	1
	aradient – $-\frac{2}{-}$	
	3	1
	v-intercept = $\frac{7}{-}$	1
	3	
	x-intercept = $\frac{7}{-}$	
	2	
2 (b)	parallel so gradient = $-\frac{2}{2}$	
	3	1
	$(y - y_1) = -\frac{2}{2}(x - x_1)$	
	2	1 method
	OE: $y = -\frac{2}{3}x + c$	
	passes through the point (3, 5)	1
	(y-5) =(x-3)	
	$OE: n = \frac{2}{r+7}$	
	$VE. \ y = -\frac{1}{3}x + 7$	
2 (c)	2x+3(2x+1)-7=0	1
	8x - 4 = 0	
	$r = \frac{1}{r}$	1
	^x 2	
	OE: <i>y</i> = 2	

3 (a)	gradient $PQ = \frac{4}{3}$	1
	gradient $QR = -\frac{3}{4}$	1
	4 3 Alexandro Donal O Dona a servici dan	1
	3 - 4 $ 1$ hence PQ and QR are perpendicular $3 - 4$	
3 (b)	$\sqrt{(5-1)^2+(3-6)^2}$	1
	$\sqrt{25}$	
	5	1
4	Radius = 8	1
E	(x-2) + (y+5) = 8	
5	x + 4x + y - 6y - 8 = 0	1 method
	$(x+2)^2 - 4 + (y-3)^2 - 9 - 8 = 0$	1
	$(x+2)^2 + (y-3)^2 = 21$	1
	Centre (–2, 3) and radius $\sqrt{21}$	1
6	gradient $AB = \frac{2}{3}$	1 1
	gradient $BC = -\frac{3}{2}$	1
	Since <i>AB</i> and <i>BC</i> are perpendicular, triangle <i>ABC</i> forms a right-angled triangle.	
	Alternative method: Find lengths <i>AB</i> , <i>BC</i> and <i>AC</i> and show that the triangle satisfies Pythagoras Theorem	1
	Using the fact that an angle in a semi-circle is a right angle it can be concluded that <i>AC</i> is a diameter.	

7	Since <i>AB</i> is a chord of the circle the perpendicular bisector will be an equation of a diameter	1
	gradient $AB = -\frac{3}{2}$	1
		1
	gradient of perpendicular line = $\frac{4}{3}$	1
	equation of perpendicular line $(y - y_1) = \frac{4}{3}(x - x_1)$	
	OE: $y = \frac{4}{3}x + c$	1
	midpoint of $AB = \left(3, \frac{5}{2}\right)$	
	Therefore, equation of a diameter $\left(y-\frac{5}{2}\right)=\frac{4}{3}(x-3)$	
	OE: $y = \frac{4}{3}x - \frac{3}{2}$	
8	$x^2 + 3x + k^2 + 2k - \frac{3}{4} = 0$	1
	If the line does not intersect the circle, then	1
	$b^2 - 4ac < 0$	
	$3^2 - 4 \times 1 \times \left(k^2 + 2k - \frac{3}{4}\right) < 0$	
	$9-4k^2-8k+3<0$	1
	$-4k^2-8k+12<0$	
	$4k^2 + 2k - 3 > 0$	1
	(k-1)(k+3) > 0	1
	k < -3 or $k > 1$	
	Alternative method: Find the centre and radius of the circle and then consider which horizontal lines would intersect.	

Rationale

19 marks scaffolded, with basic skill assessed

13 marks applying, including some more advanced problem-solving using skills from prior topics