AS and A-level MATHS

Differentiation I

Mark scheme

Specification content coverage: G1, G2

Question	Solutions	Mark
1		1
	Total	1
2 (a)	$(2+h)^{3}=h^{3}+6 h^{2}+12 h+8$	$\begin{array}{ll} 1 p=12 \\ 1 ~ \\ 1 & =8 \end{array}$
	Total	2
2 (b)	When $\begin{aligned} x=2+h, y & =h^{3}+6 h^{2}+12 h+8-5(2+h) \\ & =h^{3}+6 h^{2}+12 h+8-10-5 h \\ & =h^{3}+6 h^{2}+7 h-2 \end{aligned}$ $\begin{aligned} \text { Gradient of chord } P Q & =\frac{\left(h^{3}+6 h^{2}+7 h-2\right)-(-2)}{(2+h)-(2)} \\ & =\frac{h^{3}+6 h^{2}+7 h}{h}=h^{2}+6 h+7 \end{aligned}$ As $h \rightarrow 0, h^{2}+6 h+7 \rightarrow 7$. Therefore gradient of tangent is 7 .	1 Correct y value at Q 1 Finding gradient of chord $P Q$ 1 Correct conclusion, including limiting process
	Total	3

3 (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-9 x^{2}+2$	1 one term correct 1 all correct
	Total	2
3 (b)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{2}-18 x$	1
	Total	1
4	$f(x)=-4 x^{3}+20 x^{2}-13 x-12$ $f^{\prime}(x)=-12 x^{2}+40 x-13$	1 1 one term correct 1 all correct
	Total	3
5 (a)	$x^{\frac{5}{2}}$	1
	Total	1
5 (b)	$\begin{aligned} & y=x^{\frac{5}{2}}-3 x^{-1} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5}{2} x^{\frac{3}{2}}+3 x^{-2} \end{aligned}$	2 (one mark for each term differentiated correctly)
	Total	2
6	In Step 2, $(-4+h)^{2}$ should equal $16-8 h+h^{2}$ In Step 4, he should consider the limit as $h \rightarrow 0$, rather than just letting $h=0$.	1 1
	Total	2
7 (a)	$\frac{\mathrm{d} h}{\mathrm{~d} x}=x^{\frac{1}{3}}-0.6 x$ When $x=1, \frac{\mathrm{~d} h}{\mathrm{~d} x}=0.4$ At this point, the gradient of the hill is such that for each (kilo)metre travelled horizontally, the height of the hill will increase by 0.4 (kilo)metres.	1 1 1 referencing rate of change of height
	Total	3

7 (b)	$\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}=\frac{1}{3} x^{-\frac{2}{3}}-0.6$ When $x=1, \frac{\mathrm{~d}^{2} h}{\mathrm{~d} x^{2}}=-0.267$ (3s.f.) At this point, the gradient of the hill is decreasing at a rate of 0.267 for each (kilo) metre travelled horizontally.	1 1 referencing rate of change of gradient
	Total	2
7 (c)	In reality, a hill is not smooth so model won't give an accurate measurement of true height. OR Model predicts that height will eventually become negative, which can't happen in reality.	1
	Total	1
8	$\left.\begin{array}{rl} \mathrm{f}(x)=\left(5+2 x^{\frac{1}{2}}\right)^{3} & =5^{3}+3\left(5^{2}\right)\left(2 x^{\frac{1}{2}}\right)+3(5)(4 x)+\left(8 x^{\frac{3}{2}}\right) \\ & =125+150 x^{\frac{1}{2}}+60 x+8 x^{\frac{3}{2}} \end{array}\right\}$	1 Use of binomial 1 Correct expansion 1 One term correct 1 All correct
	Total	4
9	$\begin{aligned} & y=3 x^{3}+4 x^{-1} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=9 x^{2}-4 x^{-2} \\ & \text { Putting } \frac{\mathrm{d} y}{\mathrm{~d} x}=-35 \\ & 9 x^{2}-4 x^{-2}=-35 \end{aligned}$ Rearranging to form polynomial equation $9 x^{4}+35 x^{2}-4=0$ Solutions $x=\frac{1}{3}, x=-\frac{1}{3}$ Find coordinates $\left(\frac{1}{3}, \frac{109}{9}\right)$ and $\left(-\frac{1}{3},-\frac{109}{9}\right)$	1 1 (Method) 1 (Method) 1 1
	Total	5
	TOTAL	32

