

AS and A-level MATHS Differentiation I

Mark scheme

Specification content coverage: G1, G2

Question	Solutions		Mark
1			1
		Total	1
2 (a)	$(2+h)^3 = h^3 + 6h^2 + 12h + 8$		1 $p = 12$ 1 $q = 8$
		Total	2
2 (b)	When $x = 2 + h$, $y = h^3 + 6h^2 + 12h + 8 - 5(2 + h)$ $= h^3 + 6h^2 + 12h + 8 - 10 - 5h$ $= h^3 + 6h^2 + 7h - 2$ Gradient of chord $PQ = \frac{(h^3 + 6h^2 + 7h - 2) - (-2)}{(2 + h) - (2)}$ $= \frac{h^3 + 6h^2 + 7h}{h} = h^2 + 6h + 7$		1 Correct <i>y</i> value at Q
	As $h \rightarrow 0$, $h^2 + 6h + 7 \rightarrow 7$.		1 Finding gradient of chord <i>P</i> Q
	Therefore gradient of tangent is 7.		1 Correct conclusion, including limiting process
		Total	3

3 (a)	dy . 3 . 2 .	1 one term correct
	$\frac{dy}{dx} = 4x^3 - 9x^2 + 2$	
		T all correct
	Total	2
3 (b)	d^2y 12 2 10	4
	$\frac{dx^2}{dx^2} = 12x - 18x$	1
		-
_	Total	1
4	$f(x) = -4x^3 + 20x^2 - 13x - 12$	1
	$f'(x) = -12x^2 + 40x - 13$	1 one term correct
	Total	1 all correct
5 (2)	5	1
J (a)	$x^{\overline{2}}$	
	Total	1
5 (b)	$y = x^{\frac{5}{2}} - 3x^{-1}$	0 (
	y - x = 3x	2 (one mark for each term differentiated
	$dy = 5 \frac{3}{2}$	correctly)
	$\frac{dy}{dx} = \frac{3}{2}x^2 + 3x^{-2}$	
	Total	2
6	In Step 2, $(-4+h)^2$ should equal $16-8h+h^2$	1
	In Step 4, he should consider the limit as $h \rightarrow 0$, rather than	1
	just letting $h = 0$.	
	Total	2
7 (a)	$\frac{dh}{dt} = x^{\frac{1}{3}} - 0.6x$	1
	dx	
	When $a = 1$ dh	1
	when $x = 1$, $\frac{1}{dx} = 0.4$	
	At this point, the gradient of the hill is such that for each	1 referencing rate of
	(kilo)metre travelled horizontally, the height of the hill will	change of height
	increase by 0.4 (kilo)metres.	
	Total	3
1	i otar	1 -

7 (b)	$\frac{d^2h}{dx^2} = \frac{1}{3}x^{-\frac{2}{3}} - 0.6$	1
	When $x = 1$, $\frac{d^2h}{dx^2} = -0.267$ (3s.f.)	
	At this point, the gradient of the hill is decreasing at a rate of 0.267 for each (kilo)metre travelled horizontally.	1 referencing rate of change of gradient
	Total	2
7 (c)	In reality, a hill is not smooth so model won't give an accurate measurement of true height.	1
	OR Model predicts that height will eventually become negative, which can't happen in reality.	
	Total	1
0	1 1 3	•
0	$f(x) = (5 + 2x^{\frac{1}{2}})^3 = 5^3 + 3(5^2)(2x^{\frac{1}{2}}) + 3(5)(4x) + (8x^{\frac{1}{2}})$	1 Use of binomial
	$= 125 + 150x^{\frac{1}{2}} + 60x + 8x^{\frac{1}{2}}$	1 Correct expansion
	$f'(x) = 75x^{-\frac{1}{2}} + 60 + 12x^{\frac{1}{2}}$	1 One term correct 1 All correct
	Total	4
9	$y = 3x^{3} + 4x^{-1}$ $\frac{dy}{dx} = 9x^{2} - 4x^{-2}$	1
	Putting $\frac{dy}{dx} = -35$ $9x^2 - 4x^{-2} = -35$	1 (Method)
	Rearranging to form polynomial equation $9x^4 + 35x^2 - 4 = 0$	1 (Method)
	Solutions $x = \frac{1}{3}, x = -\frac{1}{3}$	1
	Find coordinates $\left(\frac{1}{3},\frac{109}{9}\right)$ and $\left(-\frac{1}{3},-\frac{109}{9}\right)$	1
	Total	5
	TOTAL	32