AS and A-level MATHS

Differentiation II

Mark scheme

Specification content coverage: G3

Question	Solutions	Mark
1 (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{6} x^{2}$ When $x=9, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{41}{3}$	2 1
	Total	3
1 (b)	Gradient of normal is $-\frac{3}{41}$ Equation of normal is $y-\frac{87}{2}=-\frac{3}{41}(x-9)$	1 1
	Total	2
2 (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=24 x+3 x^{-2}$	2
	Total	2
2 (b)	Stationary point when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ $\begin{aligned} & 24 x+\frac{3}{x^{2}}=0 \Rightarrow 24 x^{3}+3=0 \Rightarrow x^{3}=-\frac{1}{8} \\ & x=-\frac{1}{2} \end{aligned}$	1 Putting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempting to rearrange for x^{3} 1 Finding x
	Total	2

2 (c)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=24-6 x^{-3}$ When $x=-\frac{1}{2}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=72>0$ Therefore stationary point is minimum.	1 1 (must include reference to sign of second derivative)
	Total	2
3 (a)	$\mathrm{f}^{\prime}(x)=6 x^{2}+4 x-42$ Decreasing means $\mathrm{f}^{\prime}(x)<0$ $6 x^{2}+4 x-42<0 \Rightarrow 3 x^{2}+2 x-21<0$	1
	Total	2
3 (b)	$-3<x<\frac{7}{3}$	1 Correct critical values used in an inequality 1 Correct inequality
	Total	2
4 (a)	$\frac{\mathrm{d} P}{\mathrm{~d} t}=2.01 t^{2}-26.64 t+70$ Stationary points occur at $t=3.61$ and $t=9.64$ $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=4.02 t-26.64$ When $t=3.61, \frac{\mathrm{~d}^{2} P}{\mathrm{~d} t^{2}}=-12.1<0$ therefore maximum When $t=9.64, \frac{\mathrm{~d}^{2} P}{\mathrm{dt} t^{2}}=12.1>0$ therefore minimum Minimum cost when $t=9.64$.	1 1 1 1
	Total	4
4 (b)	$t=9.64$ corresponds to flights being bought in October It is realistic that the minimum average cost is likely to occur just after the peak holiday summer season has finished.	1
	Total	1

5	$\mathrm{f}^{\prime}(x)=-32 x^{-5}+1$ Being parallel to $A B$ means that gradient equals zero. $-\frac{32}{x^{5}}+1=0$ $x^{5}=32 \Rightarrow x=2$	1 1 1
	Total	3
6	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2} x^{\frac{1}{2}}-1 \\ & \text { Gradient of normal }=-\frac{1}{5} \Rightarrow \text { Gradient of tangent }=5 \\ & \frac{3}{2} x^{\frac{1}{2}}-1=5 \\ & \frac{3}{2} x^{\frac{1}{2}}=6 \Rightarrow x^{\frac{1}{2}}=4 \Rightarrow x=16 \end{aligned}$ When $x=16, y=-\frac{16}{5}$ $y=-\frac{16}{5} \Rightarrow-\frac{16}{5}=16 \sqrt{16}-16+c \Rightarrow c=-\frac{256}{5}$	1 1 1 1 1
	Total	5
7	$\mathrm{f}^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}-\frac{4}{3} x^{\frac{1}{3}}+k^{2}$ This is a quadratic in $x^{\frac{1}{3}}$ Discriminant of quadratic is $\frac{16}{9} k^{2}-4 \times\left(\frac{5}{3}\right) \times\left(k^{2}\right)$ Discriminant equals $-\frac{44}{9} k^{2}$. This is negative (since $k \neq 0$, so quadratic has no roots). When $x=0, \mathrm{f}^{\prime}(x)=k^{2}$. This is positive and, because quadratic has no roots, we conclude that $\mathrm{f}^{\prime}(x)>0$ for all x. Therefore $\mathrm{f}(x)$ is increasing.	1 1 1 1 1
	Total	4
	TOTAL	32

