

AS and A-level MATHS

Ex ponentials 1

Mark Sch eme

Specification content coverage: F1, F2, F3, F4

4	(1/r, 0) stated as <i>n</i> intercept	1
5	$\log \frac{a^2}{bc^{\frac{1}{3}}}$ $2\log a \text{ or } \log b \text{ or } 1/3\log c$ $2\log a - \log b - 1/3\log c$	1 1 1
6	2 expressed as $\log_b b^2$ $3\log_b 3$ expressed as $\log_b 27$ $\log_b \frac{5}{9b^2}$	1 1 1
7		1 1 1
8	gradient of tangent at $x = 3$ is ke^{3k} Rearranged equation of line is $y = -4e^{-b}x + 13e^{-b}$ $ke^{3k} = -4e^{-b}$ k = -4, b = 12	1 1 1 1
9	$\ln x = \ln\left(\frac{x+6}{x+2}\right) \text{ combine logs}$ $x = \frac{x+6}{x+2} \text{ eliminate logs}$ $x^2 + 2x = x + 6$ $x^2 + x - 6 = 0$ $x = 2 \text{ only } (x = -3 \text{ disregarded})$	1 1 1 1 1
10	gradient of the tangent at $x = 0$ is 3	1
	gradient of the normal at $x = 0$ is $-\frac{1}{3}$	1
	equation of the normal is $(y - 1) = -\frac{1}{3}$ $(-\frac{18}{13}, \frac{19}{13})$	1
	13 13	