AS and A-level MATHS

Forces 1

Specification content coverage: R1, R2, R3

In this test you will be assessed on:

- using Newton's first and second laws
- using weight and motion in a straight line under gravity
- using gravitational acceleration, g.

The test comprises two sections. The questions in section A will test you on the basics of the topic. Those in section B require a bit more thinking.

Section A: The basics

1 (a) In this question, use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
A boy throws a ball vertically upwards into the air with a velocity of $8 \mathrm{~m} \mathrm{~s}^{-1}$ and catches it again at the same point.
Calculate the greatest height the ball reaches.

1 (b) Find the speed and direction of the ball after 0.3 seconds.

1 (c) Find the total time the ball is in the air.

2 A particle of mass 800 g starts from rest, accelerates constantly for 4 s and achieves a velocity of $5 \mathrm{~m} \mathrm{~s}^{-1}$.

2 (a) Find the constant acceleration of the particle.

2 (b) Hence calculate the magnitude of the force acting on the particle.
[2 marks]
3 (a) A car of mass 600 kg pulls a caravan of mass 800 kg along a straight horizontal road.
The car experiences a resistance force of 500 N and the caravan experiences a resistance force of 900 N .

3 (a) Given that the car and caravan accelerate at $1.2 \mathrm{~m} \mathrm{~s}^{-2}$, calculate the driving force of the car.

3 (b) Calculate the force the car exerts on the caravan.

Section B: A bit more thinking

Two particles, A and B, connected by a light inextensible string are at rest on a smooth horizontal table. The mass of particle A is 3 kg and the mass of particle B is 5 kg .

A force of 7 N is applied to particle B in the direction of $A B$.
Calculate the tension in the string and the acceleration of the particles.
$5 \quad$ In this question, use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
A ball is thrown vertically upwards at $12 \mathrm{~m} \mathrm{~s}^{-1}$. Two seconds later another ball is thrown vertically upwards from the same point at $9 \mathrm{~m} \mathrm{~s}^{-1}$.

Find the height at which the balls collide.
$6 \quad$ A girl pushes a trolley of mass 7 kg from rest along a straight horizontal road with a force of 12 N . There is a resistance force of 2 N .
The girl lets go of the trolley and it slows down under the resistance force until it stops.

The trolley has travelled 45 m in total.
Find the time for which the girl was pushing the trolley.
[7 marks]

