

AS and A-level MATHS

Forces 1 Mark sch em e

Specification content coverage: R1, R2, R3

Question	Solutions	Mark
1 (a)	$0 = 8^2 + 2(-10)s$	1
	s = 3.2 m	1
1 (b)	$v = 8 - 10 \times 0.3$	1
	$v = 5 \text{ m s}^{-1}$	1
	upwards	1
1 (c)	$s = 8t - 5t^2$	
	Or find t when $v = 0$ and multiply by 2	1
	$0 = 8t - 5t^2$	1
	$t = \frac{8}{1.6} = 1.6$ seconds	4
	$1 = \frac{1}{5}$	I
2 (a)	-5 i = 4 a	1
	52	1
	$a = -ms^2$	
2 (b)	(5)	1
- ()	$\mathbf{F} = 0.8 \left[-\frac{1}{4} \right] = -1 \text{ N}$	1
0 (-)	Four term equation of motion for the combined body	1
3 (a)	D = 500 = 900 = 1.2(600 + 800)	1
	D = 3080 N	1
3 (b)	$3080 - 500 - T = 600 \times 1.2$	
3 (b)	Or T - 900 = 800 x 1.2	1
	T = 1860 N	1
4	N2L on A: $T = 3a$	1
	N2L on <i>B</i> : $7 - T = 5a$	1
	$a = 0.875 \text{ m s}^{-2}$	1
	$T = 3 \times 0.875 = 2.625$ (2.63) N	1
5	First ball $s = 12t - 9.8t^2/2$	1
	$9.8t^2$	1
	$s = 12t - \frac{1}{2}$	1
	Second ball $s = 9(t-2) - 9.8(t-2)^2/2$	1

	$s = 9(t-2) - \frac{9.8(t-2)^2}{2}$ (or 2nd ball t, 1st t+2) $t = \frac{188}{83} (2.27) \text{ (or } t = \frac{22}{83}, 0.27)$ s = 2.04 m	
6	When being pushed: $12 - 2 = 7a$, $a = \frac{10}{7}$	1
	$v = x, s = s$ $x^2 = 2\left(\frac{10}{7}\right)s$	1
	When released: $-2 = 7a$, $a = -\frac{2}{7}$	1
	u = x, s = 45 - s	1
	$0 = x^{2} + 2\left(-\frac{2}{7}\right) (45 - s), x^{2} = \frac{4}{7} (45 - s)$	
	$\frac{20s}{7} = \frac{180}{7} - \frac{4s}{7}$	
	$\frac{24s}{7} = \frac{180}{7}, s = 7.5$	1
	$7.5 = \frac{1}{2} \left(\frac{10}{7}\right) t^2$	1
	$t = \sqrt{10.5} = 3.24 \text{ s}$	1