AS and A-level MATHS

Forces 2

Specification content coverage: R4

In this test you will be assessed on using Newton's 3rd Law, including pulleys and connected particles.

The test comprises two sections. The questions in section A will test you on the basics of the topic. Those in section B require a bit more thinking.

Section A: The basics

Three forces $\mathbf{A}=2 \mathbf{i}+4 \mathbf{j}, \mathbf{B}=6 \mathbf{i}-14 \mathbf{j}$ and $\mathbf{C}=3 \mathbf{i}+2 \mathbf{j}$ act on a particle.
1 (a) Calculate the resultant of these three forces, giving your answer in terms of \mathbf{i} and \mathbf{j}.

1 (b) A fourth force, \mathbf{D}, acts on the particle so it remains in equilibrium.
Find D, giving your answer in terms of \mathbf{i} and \mathbf{j}.

2 (a) In this question use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
A box of mass 5 kg is placed on top of another box of mass 7 kg on horizontal ground, as shown in the diagram.

Draw a diagram to show the directions and magnitudes of the forces that are acting on the box of mass 5 kg .

2 (b) Draw a diagram to show the directions and magnitudes of the forces that are acting on the box of mass 7 kg .
[2 marks]
3 (a) In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
A person of mass 70 kg stands on the floor of a lift.
Calculate the force exerted on the person by the floor of the lift when the lift is accelerating upwards at $4 \mathrm{~m} \mathrm{~s}^{-1}$.
[2 marks]
3 (b) Calculate the force exerted on the person by the floor of the lift when the lift is accelerating downwards at $6 \mathrm{~m} \mathrm{~s}^{-1}$.

4 (a) In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
A box of mass 8 kg rests on a smooth horizontal table.
Two strings of equal length are attached to each end of the box, and these pass over a smooth pulley at each end of the table.
The other ends of the strings are attached to other boxes, one of mass 5 kg , the other of mass $m \mathrm{~kg}$ as shown in the diagram.

The system is released from rest and the 8 kg box moves to the left with acceleration $1.96 \mathrm{~m} \mathrm{~s}^{-2}$.
By resolving vertically on the 5 kg box, find the value of the tension in the string on the left.

4 (b) By resolving horizontally on the 8 kg box, find the value of the tension in the string on the right.

4 (c) By resolving vertically on the $m \mathrm{~kg}$ box, find the value of m.

Section B: A bit more thinking

$5 \quad$ Two trucks of masses $3 m \mathrm{~kg}$ and $4 m \mathrm{~kg}$ are pulled along a straight horizontal track by an engine of mass 5 m kg with a driving force of 18550 N , as shown in the diagram.

The $3 m \mathrm{~kg}$ mass experiences a resistance of 100 N , the 4 m kg mass experiences a resistance of 150 N and the 5 m kg mass experiences a resistance of 300 N .

The system accelerates at $2.5 \mathrm{~m} \mathrm{~s}^{-2}$.
Calculate the value of m, find the tension in the horizontal coupling between the trucks, and find the tension in the horizontal coupling between the $4 m \mathrm{~kg}$ truck and the engine.

5 (a) Calculate the value of m.

5 (b) Find the tension in the horizontal coupling between the trucks and between the $4 m$ kg truck and the engine.
[3 marks]
$6 \quad$ In this question use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
A box of mass 9 kg rests on a smooth horizontal table.
A string attached to the box passes over a smooth pulley at the edge of the table. The other end of the string is attached to box of mass 3 kg , which hangs vertically. The system is released from rest.
Calculate the acceleration of the system, the tension in the string and the time it takes the boxes to move 3 m .
[6 marks]

$7 \quad$ In this question use $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.

Two small particles of masses 6 kg and 3 kg are attached to the ends of a light inextensible string. The string passes over a smooth pulley at a height of 5 m above the ground.
The system is released from rest with both particles hanging vertically at a height of 2 m above the ground.
Explain whether the 3 kg particle will reach the pulley before it begins to move.
Fully justify your answer.
[6 marks]

