AS and A-level MATHS

Forces 2

Mark sch eme

Specification content coverage: R4

Question	Solutions	Mark
1 (a)	11i-8j	1
1 (b)	$-11 \mathbf{i}+8 \mathbf{j}$	1
2 (a)		1
2 (b)		1 mark for upward force correct 1 mark for both downward forces correct
3 (a)	$\begin{aligned} & R-70 g=70 \times 4 \\ & R=966=970 \mathrm{~N}(2 \text { significant figures }) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
3 (b)	$\begin{aligned} & 70 g-R=70 \times 6 \\ & R=266=270 \mathrm{~N}(2 \text { significant figures }) \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
4 (a)	$\begin{aligned} & 5 g-T_{1}=5 \times 1.96 \\ & T_{1}=39.2=39 \mathrm{~N}(2 \text { significant figures }) \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
4 (b)	$\begin{aligned} & \hline T_{1}-T_{2}=8 \times 1.96 \\ & T_{2}=23.52=24 \mathrm{~N}(2 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$

\begin{tabular}{|c|c|c|}
\hline 4 (c) \& \[
\begin{aligned}
\& m g-T_{2}=m \times 1.96 \\
\& m=3 \mathrm{~kg}
\end{aligned}
\] \& 1 \\
\hline 5 (a) \& Resolve on whole system
\[
\begin{aligned}
\& 18550-(300+150+100)=12 m \times 2.5 \\
\& m=600
\end{aligned}
\] \& 1 \\
\hline 5 (b) \& \begin{tabular}{l}
Resolve on one truck or on engine \(18550-T_{1}-300=3000 \times 2.5\) \\
or \(T_{2}-100=1800 \times 2.5\) \\
or \(T_{1}-T_{2}-150=2400 \times 2.5\) \\
\(T_{1}=10750 \mathrm{~N}\) \\
\(T_{2}=4600 \mathrm{~N}\)
\end{tabular} \& 1 \\
\hline 6 \& \begin{tabular}{l}
Resolve horizontally on 9 kg box
\[
T=9 a
\] \\
Resolve vertically on 3 kg box
\[
\begin{aligned}
\& 3 g-T=3 a \\
\& a=2.45=2.5 \mathrm{~m} \mathrm{~s}^{-2} \text { (2 significant figures) } \\
\& T=22.05=22 \mathrm{~N}(2 \text { significant figures }) \\
\& 3=0+0.5 \times 2.45 t^{2} \\
\& t=1.56=1.6 \mathrm{~s}(2 \text { significant figures })
\end{aligned}
\]
\end{tabular} \& 1
1
1
1
1
1 \\
\hline 7 \& \begin{tabular}{l}
Resolve vertically on 6 kg particle
\[
6 g-T=6 a
\] \\
Resolve vertically on 3 kg box
\[
\begin{aligned}
\& T-3 g=3 a \\
\& a=3.27
\end{aligned}
\] \\
velocity when 6 kg hits the floor
\[
\begin{aligned}
\& v^{2}=2 \times 3.27 \times 2 \\
\& v^{2}=13.08(v=3.6166 \ldots)
\end{aligned}
\] \\
Either: further distance travelled when 3 kg particle reaches greatest height, \(v=0\)
\[
\begin{aligned}
\& 0=13.08-2 \times 9.81 \times s \\
\& s=\frac{2}{3} \mathrm{~m}
\end{aligned}
\] \\
No, because the particle will still be \(5-2-2-\frac{2}{3}=\frac{1}{3} \mathrm{~m}\) below the pulley \\
Or: velocity of 3 kg particle when it reaches the pulley, \(s=1\)
\[
v^{2}=13.08-2 \times 9.81 \times 1
\] \\
No, because \(v^{2}=-6.54 \mathrm{~m} \mathrm{~s}^{-1}\), which shows it cannot reach the pulley
\end{tabular} \& 1
1
1
1
1

1

1

\hline
\end{tabular}

