

AS and A-level MATHS

Forces 2

Mark sch em e

Specification content coverage: R4

Question	Solutions	Mark
1 (a)	11i – 8j	1
1 (b)	-11i + 8j	1
2 (a)	↑ 50 N	1
2 (b)	↑ 120 N	1 mark for upward force correct 1 mark for both downward forces correct
3 (a)	$R - 70g = 70 \times 4$ R = 966 = 970 N (2 significant figures)	1 1
3 (b)	$70g - R = 70 \times 6$	1
	R = 266 = 270 N (2 significant figures)	1
4 (a)	$5g - T_1 = 5 \times 1.96$	1
	$T_1 = 39.2 = 39 \text{ N} (2 \text{ significant figures})$	1
4 (b)	$T_1 - T_2 = 8 \times 1.96$	1
	$I_2 = 23.52 = 24 \text{ N} (2 \text{ SI})$	

4 (c)	$mg-T_2=m \times 1.96$	1
. ,	m = 3 kg	1
5 (a)	Resolve on whole system	
	$18550 - (300 + 150 + 100) = 12m \times 2.5$	1
	<i>m</i> = 600	1
5 (b)	Resolve on one truck or on engine	
	$18550 - T_1 - 300 = 3000 \times 2.5$	
	or $T_2 - 100 = 1800 \times 2.5$	1
	or $T_1 - T_2 - 150 = 2400 \times 2.5$	
	$T_1 = 10\ 750\ N$	1
	$T_2 = 4600 \text{ N}$	1
6	Resolve horizontally on 9 kg box	
	T = 9a	1
	Resolve vertically on 3 kg box	
	3g-T=3a	1
	a = 2.45 = 2.5 m s ⁻² (2 significant figures)	1
	T = 22.05 = 22 N (2 significant figures)	1
	$3 = 0 + 0.5 \times 2.45t^2$	1
	t = 1.56 = 1.6 s (2 significant figures)	1
7	Resolve vertically on 6 kg particle	
	6g - T = 6a	1
	Resolve vertically on 3 kg box	
	T-3g=3a	1
	a = 3.27	1
	velocity when 6 kg hits the floor	
	$v^2 = 2 \times 3.27 \times 2$	1
	$v^2 = 13.08 \ (v = 3.6166)$	
	Either: further distance travelled when 3 kg particle reaches	
	greatest height, $v = 0$	
	$0 = 13.08 - 2 \times 9.81 \times s$	
	2	
	$s = -\frac{1}{3}$ m	
	No, because the particle will still be $5 - 2 - 2 - \frac{2}{2} = \frac{1}{2}$ m	
	3 3	1
	below the pulley	
	Or: velocity of 3 kg particle when it reaches the pulley, $s = 1$	
	$v^2 = 13.08 - 2 \times 9.81 \times 1$	
	No, because $v^2 = -6.54$ m s ⁻¹ , which shows it cannot reach	1
	the pulley	