## A-level <br> MATHS

## Forces

Specification content coverage: R2, R4, R5

In this test you will be assessed on:

- understanding and using Newton's second law for motion in situations where forces need to be resolved
- resolving forces in two dimensions
- the equilibrium of a particle under coplanar forces
- understanding and using addition of forces and resultant forces.

The test comprises two sections. The questions in section A will test you on the basics of the topic. Those in section $B$ require a bit more thinking.

## Section A: The basics

1 (a) A particle of weight 17 N is held in equilibrium by a force $F \mathrm{~N}$ on a smooth plane inclined at $50^{\circ}$ to the horizontal.
$F$ acts parallel to the plane as shown in the diagram.


## Find $F$.

1 (b)


Find $F$ if instead it acts horizontally as shown in the diagram.

2 Three forces act at a point $O$ as shown in the diagram.


2 (a) Find the component of the resultant of the three forces in the $x$-direction and the $y$-direction.

2 (b) Hence find:
2 (b) (i) the magnitude of the resultant of the three forces.
[2 marks]
2 (b) (ii) the angle the resultant force makes with the positive $x$-direction, giving your answer to the nearest $0.1^{\circ}$.

## Section B: A bit more thinking

In this question use $\boldsymbol{g}=\mathbf{1 0} \mathbf{~ m ~ s}^{\mathbf{- 2}}$.
A particle of mass 4 kg is help in equilibrium by two strings, inclined at angles of $30^{\circ}$ and $20^{\circ}$ to the horizontal, as shown in the diagram.


Find the tension in each string.

4 (a) A particle, with mass 8 kg , rests in equilibrium on a smooth horizontal surface.
Three forces of magnitudes $5 \mathrm{~N}, 9 \mathrm{~N}$ and $F \mathrm{~N}$ act on the particle on bearings of $180^{\circ}, 270^{\circ}$ and $\theta^{\circ}$ respectively, as shown in the diagram.


Find $F$ and $\theta$ (giving your answer to the nearest $0.1^{\circ}$ ).

4 (b) The force of 5 N stops acting on the particle.
Find the magnitude and direction (as a bearing) of the subsequent acceleration.

5 (a) Two forces of $(6 \mathbf{i}-7 \mathbf{j})$ newtons and $(a \mathbf{i}+b \mathbf{j})$ newtons act on a particle of mass 3 kg . The resultant force acts in a direction parallel to $2 \mathbf{i}-5 \mathbf{j}$.
Find the angle between the resultant force and $\mathbf{j}$.
[2 marks]
5 (b) Show that $5 a+2 b=-16$.

5 (c) Given that $a=-2$, find the speed of the particle 5 seconds after it is released from rest.
[4 marks]
6 In this question use $\boldsymbol{g}=\mathbf{9 . 8 1} \mathbf{~ m ~ s}^{-2}$.
A particle of mass 0.5 kg is held on a rough plane inclined at $\theta^{\circ}$ to the horizontal where $\sin \theta=0.8$. The particle is released from rest and travels 6.5 m during the first 4 s of its motion.

Find the magnitude of the resistive force acting against the motion of the particle.
[4 marks]

