AQA A level Maths A model for friction

Section 1: Friction
Solutions to Exercise level 2

1. (i)

Resolving vertically: $R-0.89=0$

$$
R=0.8 \times 10=8
$$

Friction is limiting so $F=\mu R=0.5 \times 8=4$
Resolving horizontally: $x-F=0$

$$
x=F=4
$$

The least force required is 4 N .
(ii)

Resolving vertically: $R+x \sin 30^{\circ}-0.89=0$

$$
R=0.8 \times 10-\frac{1}{2} x=8-0.5 x
$$

Friction is limiting so $F=\mu R=0.5(8-0.5 x)=4-0.25 x$
Resolving horizontally: $\chi \cos 30^{\circ}-F=0$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{3} x=4-0.25 x \\
& \sqrt{3} x+0.5 x=8 \\
& x=\frac{8}{\sqrt{3}+0.5}=3.58
\end{aligned}
$$

The least force required is 1.66 N .
2. (i)

AQA A level Maths Friction 1 Exercise solutions

Resolving horizontally:

$$
\begin{aligned}
& g-F=0 \\
& F=g
\end{aligned}
$$

The magnitude of the frictional force is 9 N .
(ii)

Resolving horizontally:
$F=0 \quad 0$
o \bigcirc

The magnitude of the frictional force is $O \mathrm{~N}$.
(iíi)

Resolving horizontally: $9 \cos 60^{\circ}-F=0$

$$
F=g \times \frac{1}{2}=4.5
$$

The magnitude of the frictional force is 4.5 N .
3. Since the block is on the point of sliding down the plane, the frictional force acts upwards.

Resolving perpendicular to the plane: $R-20 \cos 30^{\circ}=0$

$$
R=20 \times \frac{1}{2} \sqrt{3}=10 \sqrt{3}
$$

Resolving parallel to the plane: $F-20 \sin 30^{\circ}=0$

$$
F=20 \times \frac{1}{2}=10
$$

AQA A level Maths Friction 1 Exercise solutions

Friction is limiting so $F=\mu R$

$$
\begin{aligned}
& 10=10 \sqrt{3} \mu \\
& \mu=\frac{1}{\sqrt{3}}=0.577
\end{aligned}
$$

4. (i)

Resolving perpendicular to the plane:

$$
\begin{aligned}
& R-209 \cos \theta=0 \\
& R=20 \times 9.8 \times \frac{24}{25}=188.16
\end{aligned}
$$

Friction is limíting so $F=\mu R=0.2 \times 188.16=37.632$
Resolving parallel to the plane: $\quad F+x-209 \sin \theta=0$

$$
x=20 \times 9.8 \times \frac{7}{25}-37.632=17.248
$$

The force required is $17.3 \mathrm{~N}(3 \mathrm{s.f}$.)
(ii)

As in (i) friction is limiting so $F=37.632$
Resolving parallel to the plane:

$$
\begin{aligned}
& x-F-20 g \sin \theta=0 \\
& x=20 \times 9.8 \times \frac{7}{25}+37.632=92.512
\end{aligned}
$$

The force required is 92.5 N ($3 \mathrm{~s} . f$.)

