

AS and A-level MATHS

G raph s and transf ormations

Mark sch eme

Specification content coverage: B7, B9

5 (a)	$V \propto \frac{1}{T} \Rightarrow V = \frac{k}{T}$	1 identifying relationship is a
		functions
		1 correct sketch, including approaching asymptotes
5 (b)	$6 = \frac{k}{70} \implies k = 420$	1 finding value of <i>k</i> (possibly implied)
	$5.6 = \frac{T}{T} \implies T = \frac{1}{5.6} = 75 \text{ seconds}$	1 finding T
6	New equation is $y = \frac{3}{\left(\frac{1}{4}x\right)^2}$	1 applying horizontal stretch correctly
	So $y = \frac{3}{\frac{1}{16}x^2} = 16 \times \frac{3}{x^2}$	
	Therefore $k = 16$	1 Stating value
	(r)	of k
7	Replace x with $\left(\frac{x}{2}\right)$	1 "Stretch, parallel to <i>x</i> "
	Stretch, parallel to the <i>x</i> -axis, scale factor 2	1 "Scale factor 2"
8 (a)	Replace x by $\frac{x}{3\sqrt{a}}$	1
	Correctly stating $\left(\frac{x}{3\sqrt{a}}\right)^3 = \frac{x^3}{27a\sqrt{a}}$ and $\left(\frac{x}{3\sqrt{a}}\right)^2 = \frac{x^2}{9a}$	1
	Correct derivation of $g(x)$	

_			
		$54a\sqrt{a}\left(\frac{x}{3\sqrt{a}}\right)^3 + 27a\left(\frac{x}{3\sqrt{a}}\right)^2 - 51\sqrt{a}\left(\frac{x}{3\sqrt{a}}\right) + 12$	
		$=54a\sqrt{a}\left(\frac{x^{3}}{27a\sqrt{a}}\right)+27a\left(\frac{x^{2}}{9a}\right)-51\sqrt{a}\left(\frac{x}{3\sqrt{a}}\right)+12$	
		$= 2x^3 + 3x^2 - 17x + 12$	seen
	8 (b)	Solutions to $g(x) = 0$ are $x = -4$, $x = \frac{3}{2}$ and $x = 1$.	1
		Roots of $f(x)$ are found by dividing roots of $g(x)$ by $3\sqrt{a}$	1 attempting to convert between roots of f and
		Solutions to $f(x) = 0$ are $x = \frac{-4}{3\sqrt{a}}$, $x = \frac{1}{2\sqrt{a}}$ and $x = \frac{1}{3\sqrt{a}}$	roots of g
			corrects
	9 (a)	Forming quadratic equal to zero	
		$\frac{1}{x-3} = kx \Rightarrow 1 = kx^2 - 3kx \Rightarrow 0 = kx^2 - 3kx - 1$	1
		Putting discriminant equal to zero $9k^2 - 4(k)(-1) = 0$	1
		Solving $9k^2 + 4k = 0 \implies k = -\frac{4}{9} (k \neq 0)$	1

Rationale

It is assumed that students are proficient at using calculator to solve cubic and quadratic equations.

15 marks scaffolded, with basic skills assessed

17 marks applying, including some more advanced problem-solving