Question Sheet

1.	Compute the area between the curve $y = (x+3)(x-3)$ and the x-axis, for $-2 \le x \le 1$.
2.	Compute the area between the curve $y = (x+1)(x-2)$ and the x-axis, for $0 \le x \le 1$.
3.	Compute the area between the curve $y = -(x+4)(x+1)$ and the x-axis, for $-4 \le x \le -3$.
4.	Compute the area between the curve $y = (x - 1)(x + 5)$ and the x-axis, for $-3 \le x \le 1$.
5.	Compute the area between the curve $y = (x+2)(x-5)$ and the x-axis, for $-1 \le x \le 2$.
6.	Compute the area between the curve $y = (x+5)(x-3)(x-5)$ and the x-axis, for $-2 \le x \le -1$.
7.	Compute the area between the curve $y = -(x+4)x(x-3)$ and the x-axis, for $-2 \le x \le 0$.
8.	Compute the area between the curve $y = -(x+1)(x-1)(x-3)$ and the x-axis, for $-1 \le x \le 3$.
9.	Compute the area between the curve $y = -(x+2)(x-3)(x-5)$ and the x-axis, for $-2 \le x \le 1$.
10.	Compute the area between the curve $y = (x+3)x(x-4)$ and the x-axis, for $-2 \le x \le 2$.
11.	Find the shaded area, which is bounded by the curve $y = (x+5)(x+1)$ and the line $y = 5x + 17$.

12. Find the shaded area, which is bounded by the curve y = -(x+2)(x-4) and the line y = -2x+3.

13. Find the shaded area, which is bounded by the curve y = (x+5)(x+2) and the line y = 4x + 14.

14. Find the shaded area, which is bounded by the curve y = -(x+2)(x+1) and the line y = -x - 10.

15. Find the shaded area, which is bounded by the curve y = x(x-3) and the line y = -5x + 8.

16. Calculate the shaded area. The curve has equation y = -(x+4)(x-3), and the line has equation y = -2x.

17. Calculate the shaded area. The curve has equation y = -(x+4)(x-2), and the line has equation y = -3x-4.

18. Calculate the shaded area. The curve has equation y = -(x+5)(x-4), and the line has equation y = -3x+5.

19. Calculate the shaded area. The curve has equation y = -(x+3)(x+1), and the line has equation y = -5x-9.

20. Calculate the shaded area. The curve has equation y = (x+4)(x-4), and the line has equation y = -11+4x.

21. Find the shaded area, which is bounded by the curves with equations y = (x+4)(x-1) and y = -(x+4)(x+1)(x-1).

22. Find the shaded area, which is bounded by the curves with equations y = -(x + 4)(x - 1) and y = (x + 4)(x + 1)(x - 1).

23. Find the shaded area, which is bounded by the curves with equations y = -(x + 1)(x - 4) and y = -(x + 1)(x - 1)(x - 4).

24. Find the shaded area, which is bounded by the curves with equations y = (x+1)(x-5) and y = -(x+1)(x-3)(x-5).

25. Find the shaded area, which is bounded by the curves with equations y = (x+4)(x-5) and y = -(x+4)(x-3)(x-5).

26. Find the area bounded by the curve $y = \frac{1}{2}x^2$, and its normals at x = -1 and x = 1.

27. Find the area bounded by the curve
$$y = \frac{1}{2}x^2$$
, and its normals at $x = -2$ and $x = 1$.

28. Find the area bounded by the curve
$$y = \frac{1}{4}x^2$$
, and its normals at $x = -2$ and $x = 1$.

29. Find the area bounded by the curve
$$y = \frac{1}{4}x^2$$
, and its normals at $x = -1$ and $x = 1$.

30. Find the area bounded by the curve
$$y = \frac{1}{3}x^2$$
, and its normals at $x = -3$ and $x = 2$.