Solution Sheet

1. The area under the curve is given by $-\int_{-2}^{1}(x+3)(x-3) \mathrm{d} x$:

$$
\begin{aligned}
A & =-\int_{-2}^{1}(x+3)(x-3) \mathrm{d} x \\
& =-\int_{-2}^{1} x^{2}-9 \mathrm{~d} x \\
& =-\left[\frac{1}{2+1} \times x^{2+1}-9 x\right]_{-2}^{1} \\
& =-\left[\frac{1}{3} x^{3}-9 x\right]_{-2}^{1} \\
& =-\left(\left(\frac{1}{3} \times 1^{3}+-9 \times 1\right)-\left(\frac{1}{3}(-2)^{3}-9 \times(-2)\right)\right)=24
\end{aligned}
$$

2. The area under the curve is given by $-\int_{0}^{1}(x+1)(x-2) \mathrm{d} x$:

$$
\begin{aligned}
A & =-\int_{0}^{1}(x+1)(x-2) \mathrm{d} x \\
& =-\int_{0}^{1} x^{2}-x-2 \mathrm{~d} x \\
& =-\left[\frac{1}{2+1} \times x^{2+1}-\frac{1}{1+1} \times x^{1+1}-2 x\right]_{0}^{1} \\
& =-\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x\right]_{0}^{1} \\
& =-\left(\left(\frac{1}{3} \times 1^{3}+-\frac{1}{2} \times 1^{2}+-2 \times 1\right)-\left(\frac{1}{3} \times 0^{3}-\frac{1}{2} \times 0^{2}-2 \times 0\right)\right)=\frac{13}{6}
\end{aligned}
$$

3. The area under the curve is given by $\int_{-4}^{-3}-(x+4)(x+1) \mathrm{d} x$:

$$
\begin{aligned}
A & =\int_{-4}^{-3}-(x+4)(x+1) \mathrm{d} x \\
& =\int_{-4}^{-3}-x^{2}-5 x-4 \mathrm{~d} x \\
& =\left[-\frac{1}{3} x^{3}-5 \times \frac{1}{1+1} \times x^{1+1}-4 x\right]_{-4}^{-3} \\
& =\left[-\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-4 x\right]_{-4}^{-3} \\
& =\left(-\frac{1}{3} \times-3^{3}+-\frac{5}{2} \times-3^{2}+-4 \times-3\right)-\left(-\frac{1}{3}(-4)^{3}-\frac{5}{2}(-4)^{2}-4 \times(-4)\right)=\frac{7}{6}
\end{aligned}
$$

4. The area under the curve is given by $-\int_{-3}^{1}(x-1)(x+5) \mathrm{d} x$:

$$
\begin{aligned}
A & =-\int_{-3}^{1}(x-1)(x+5) \mathrm{d} x \\
& =-\int_{-3}^{1} x^{2}+4 x-5 \mathrm{~d} x \\
& =-\left[\frac{1}{2+1} \times x^{2+1}+4 \times \frac{1}{1+1} \times x^{1+1}-5 x\right]_{-3}^{1} \\
& =-\left[\frac{1}{3} x^{3}+2 x^{2}-5 x\right]_{-3}^{1} \\
& =-\left(\left(\frac{1}{3} \times 1^{3}+2 \times 1^{2}+-5 \times 1\right)-\left(\frac{1}{3}(-3)^{3}+2(-3)^{2}-5 \times(-3)\right)\right)=\frac{80}{3}
\end{aligned}
$$

5. The area under the curve is given by $-\int_{-1}^{2}(x+2)(x-5) \mathrm{d} x$:

$$
\begin{aligned}
A & =-\int_{-1}^{2}(x+2)(x-5) \mathrm{d} x \\
& =-\int_{-1}^{2} x^{2}-3 x-10 \mathrm{~d} x \\
& =-\left[\frac{1}{2+1} \times x^{2+1}-3 \times \frac{1}{1+1} \times x^{1+1}-10 x\right]_{-1}^{2} \\
& =-\left[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-10 x\right]_{-1}^{2} \\
& =-\left(\left(\frac{1}{3} \times 2^{3}+-\frac{3}{2} \times 2^{2}+-10 \times 2\right)-\left(\frac{1}{3}(-1)^{3}-\frac{3}{2}(-1)^{2}-10 \times(-1)\right)\right)=\frac{63}{2}
\end{aligned}
$$

6. Drawing a sketch, we see that the curve is above the x-axis for $-2 \leq x \leq-1$.

Therefore the area is given by

$$
\begin{aligned}
& \int_{-2}^{-1}(x+5)(x-3)(x-5) \mathrm{d} x \\
= & \int_{-2}^{-1} x^{3}-3 x^{2}-25 x+75 \mathrm{~d} x \\
= & {\left[\frac{1}{3+1} \times x^{3+1}-3 \times \frac{1}{2+1} \times x^{2+1}-25 \times \frac{1}{1+1} \times x^{1+1}+75 x\right]_{-2}^{-1} } \\
= & {\left[\frac{1}{4} x^{4}-x^{3}-\frac{25}{2} x^{2}+75 x\right]_{-2}^{-1} } \\
= & \left(\frac{1}{4} \times-1^{4}+-1 \times-1^{3}+-\frac{25}{2} \times-1^{2}+75 \times-1\right)-\left(\frac{1}{4}(-2)^{4}-(-2)^{3}-\frac{25}{2}(-2)^{2}-75 \times 2\right) \\
= & \frac{407}{4}
\end{aligned}
$$

7. Drawing a sketch, we see that the curve is below the x-axis for $-2 \leq x \leq 0$.

Therefore the area is given by

$$
\begin{aligned}
& -\int_{-2}^{0}-(x+4) x(x-3) \mathrm{d} x \\
= & -\int_{-2}^{0}-x^{3}-x^{2}+12 x \mathrm{~d} x \\
= & -\left[-\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+12 \times \frac{1}{1+1} \times x^{1+1}\right]_{-2}^{0} \\
= & -\left[-\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+6 x^{2}\right]_{-2}^{0} \\
= & -\left(\left(-\frac{1}{4} \times 0^{4}+-\frac{1}{3} \times 0^{3}+6 \times 0^{2}\right)-\left(-\frac{1}{4}(-2)^{4}-\frac{1}{3}(-2)^{3}+6(-2)^{2}\right)\right) \\
= & \frac{68}{3}
\end{aligned}
$$

8. Drawing a sketch, we see that the curve is below the x-axis for $-1 \leq x \leq 1$, and above the axis for $1 \leq x \leq 3$.

Therefore the area is given by

$$
A=A_{1}+A_{2}
$$

where

$$
\begin{array}{r}
A_{1}=-\int_{-1}^{1}-(x+1)(x-1)(x-3) \mathrm{d} x=-\int_{-1}^{1}-x^{3}+3 x^{2}+x-3 \mathrm{~d} x=-\left[-\frac{1}{4} x^{4}+x^{3}+\frac{1}{2} x^{2}-3 x\right]_{-1}^{1}=4 \\
A_{2}=\int_{1}^{3}-(x+1)(x-1)(x-3) \mathrm{d} x=\int_{1}^{3}-x^{3}+3 x^{2}+x-3 \mathrm{~d} x=\left[-\frac{1}{4} x^{4}+x^{3}+\frac{1}{2} x^{2}-3 x\right]_{1}^{3}=4
\end{array}
$$

Hence,

$$
A=A_{1}+A_{2}=4+4=8
$$

9. Drawing a sketch, we see that the curve is below the x-axis for $-2 \leq x \leq 1$.

Therefore the area is given by

$$
\begin{aligned}
& -\int_{-2}^{1}-(x+2)(x-3)(x-5) \mathrm{d} x \\
= & -\int_{-2}^{1}-x^{3}+6 x^{2}+x-30 \mathrm{~d} x \\
= & -\left[-\frac{1}{4} x^{4}+6 \times \frac{1}{2+1} \times x^{2+1}+\frac{1}{1+1} \times x^{1+1}-30 x\right]_{-2}^{1} \\
= & -\left[-\frac{1}{4} x^{4}+2 x^{3}+\frac{1}{2} x^{2}-30 x\right]_{-2}^{1} \\
= & -\left(\left(-\frac{1}{4} \times 1^{4}+2 \times 1^{3}+\frac{1}{2} \times 1^{2}+-30 \times 1\right)-\left(-\frac{1}{4}(-2)^{4}+2(-2)^{3}+\frac{1}{2}(-2)^{2}-30 \times(-2)\right)\right) \\
= & \frac{279}{4}
\end{aligned}
$$

10. Drawing a sketch, we see that the curve is above the x-axis for $-2 \leq x \leq 0$, and below the axis for $0 \leq x \leq 2$.

Therefore the area is given by

$$
A=A_{1}+A_{2}
$$

where

$$
\begin{gathered}
A_{1}=\int_{-2}^{0}(x+3) x(x-4) \mathrm{d} x=\int_{-2}^{0} x^{3}-x^{2}-12 x \mathrm{~d} x=\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-6 x^{2}\right]_{-2}^{0}=\frac{52}{3} \\
A_{2}=-\int_{0}^{2}(x+3) x(x-4) \mathrm{d} x=-\int_{0}^{2} x^{3}-x^{2}-12 x \mathrm{~d} x=-\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-6 x^{2}\right]_{0}^{2}=\frac{68}{3}
\end{gathered}
$$

Hence,

$$
A=A_{1}+A_{2}=\frac{52}{3}+\frac{68}{3}=40
$$

11. First, we label the sketch:

The curve and line intersect when:

$$
\begin{aligned}
(x+5)(x+1) & =5 x+17 \\
0 & =-x+12-x^{2} \\
0 & =(4+x)(3-x) \\
x & =-4,3
\end{aligned}
$$

We see that the top curve is $y_{1}(x)=5 x+17$, and the bottom curve is $y_{2}(x)=(x+5)(x+1)$. Therefore the area is

$$
\begin{aligned}
\int_{-4}^{3}\left(y_{1}-y_{2}\right) \mathrm{d} x & =\int_{-4}^{3}(5 x+17)-(x+5)(x+1) \mathrm{d} x \\
& =\int_{-4}^{3}-x+12-x^{2} \mathrm{~d} x \\
& =\left[-\frac{1}{1+1} \times x^{1+1}+12 x-\frac{1}{3} x^{3}\right]_{-4}^{3} \\
& =\left[-\frac{1}{2} x^{2}+12 x-\frac{1}{3} x^{3}\right]_{-4}^{3} \\
& =\left(-\frac{1}{2} \times 3^{2}+12 \times 3+-\frac{1}{3} \times 3^{3}\right)-\left(-\frac{1}{2}(-4)^{2}-12 \times 4-\frac{1}{3}(-4)^{3}\right) \\
& =\frac{343}{6}
\end{aligned}
$$

12. First, we label the sketch:

The curve and line intersect when:

$$
\begin{aligned}
-(x+2)(x-4) & =-2 x+3 \\
0 & =-4 x-5+x^{2} \\
0 & =(x+1)(x-5) \\
x & =-1,5
\end{aligned}
$$

We see that the top curve is $y_{1}(x)=-(x+2)(x-4)$, and the bottom curve is $y_{2}(x)=-2 x+3$. Therefore the area is

$$
\begin{aligned}
\int_{-1}^{5}\left(y_{1}-y_{2}\right) \mathrm{d} x & =\int_{-1}^{5}-(x+2)(x-4)-(-2 x+3) \mathrm{d} x \\
& =\int_{-1}^{5}-x^{2}+4 x+5 \mathrm{~d} x \\
& =\left[-\frac{1}{3} x^{3}+4 \times \frac{1}{1+1} \times x^{1+1}+5 x\right]_{-1}^{5} \\
& =\left[-\frac{1}{3} x^{3}+2 x^{2}+5 x\right]_{-1}^{5} \\
& =\left(-\frac{1}{3} \times 5^{3}+2 \times 5^{2}+5 \times 5\right)-\left(-\frac{1}{3}(-1)^{3}+2(-1)^{2}-5\right) \\
& =36
\end{aligned}
$$

13. First, we label the sketch:

The curve and line intersect when:

$$
\begin{aligned}
(x+5)(x+2) & =4 x+14 \\
0 & =-3 x+4-x^{2} \\
0 & =(4+x)(1-x) \\
x & =-4,1
\end{aligned}
$$

We see that the top curve is $y_{1}(x)=4 x+14$, and the bottom curve is $y_{2}(x)=(x+5)(x+2)$. Therefore the area is

$$
\begin{aligned}
\int_{-4}^{1}\left(y_{1}-y_{2}\right) \mathrm{d} x & =\int_{-4}^{1}(4 x+14)-(x+5)(x+2) \mathrm{d} x \\
& =\int_{-4}^{1}-3 x+4-x^{2} \mathrm{~d} x \\
& =\left[-3 \times \frac{1}{1+1} \times x^{1+1}+4 x-\frac{1}{3} x^{3}\right]_{-4}^{1} \\
& =\left[-\frac{3}{2} x^{2}+4 x-\frac{1}{3} x^{3}\right]_{-4}^{1} \\
& =\left(-\frac{3}{2} \times 1^{2}+4+-\frac{1}{3} \times 1^{3}\right)-\left(-\frac{3}{2}(-4)^{2}-4 \times 4-\frac{1}{3}(-4)^{3}\right) \\
& =\frac{125}{6}
\end{aligned}
$$

14. First, we label the sketch:

The curve and line intersect when:

$$
\begin{aligned}
-(x+2)(x+1) & =-x-10 \\
0 & =2 x-8+x^{2} \\
0 & =(x+4)(x-2) \\
x & =-4,2
\end{aligned}
$$

We see that the top curve is $y_{1}(x)=-(x+2)(x+1)$, and the bottom curve is $y_{2}(x)=-x-10$. Therefore the area is

$$
\begin{aligned}
\int_{-4}^{2}\left(y_{1}-y_{2}\right) \mathrm{d} x & =\int_{-4}^{2}-(x+2)(x+1)-(-x-10) \mathrm{d} x \\
& =\int_{-4}^{2}-x^{2}-2 x+8 \mathrm{~d} x \\
& =\left[-\frac{1}{3} x^{3}-2 \times \frac{1}{1+1} \times x^{1+1}+8 x\right]_{-4}^{2} \\
& =\left[-\frac{1}{3} x^{3}-x^{2}+8 x\right]_{-4}^{2} \\
& =\left(-\frac{1}{3} \times 2^{3}+-1 \times 2^{2}+8 \times 2\right)-\left(-\frac{1}{3}(-4)^{3}-(-4)^{2}-8 \times 4\right) \\
& =36
\end{aligned}
$$

15. First, we label the sketch:

The curve and line intersect when:

$$
\begin{aligned}
x(x-3) & =-5 x+8 \\
0 & =-2 x+8-x^{2} \\
0 & =(4+x)(2-x) \\
x & =-4,2
\end{aligned}
$$

We see that the top curve is $y_{1}(x)=-5 x+8$, and the bottom curve is $y_{2}(x)=x(x-3)$. Therefore the area is

$$
\begin{aligned}
\int_{-4}^{2}\left(y_{1}-y_{2}\right) \mathrm{d} x & =\int_{-4}^{2}(-5 x+8)-x(x-3) \mathrm{d} x \\
& =\int_{-4}^{2}-2 x+8-x^{2} \mathrm{~d} x \\
& =\left[-2 \times \frac{1}{1+1} \times x^{1+1}+8 x-\frac{1}{3} x^{3}\right]_{-4}^{2} \\
& =\left[-x^{2}+8 x-\frac{1}{3} x^{3}\right]_{-4}^{2} \\
& =\left(-1 \times 2^{2}+8 \times 2+-\frac{1}{3} \times 2^{3}\right)-\left(-(-4)^{2}-8 \times 4-\frac{1}{3}(-4)^{3}\right) \\
& =36
\end{aligned}
$$

16. First, we label the sketch. The curve intersects the x-axis at $x=-4,3$, and the line intersects the x-axis at $x=0$. The curve and line intersect when:

$$
\begin{aligned}
-(x+4)(x-3) & =-2 x \\
0 & =-x-12+x^{2} \\
0 & =(x+3)(x-4) \\
x & =-3,4
\end{aligned}
$$

and substitution into either equation gives the intersection points as $(-3,6),(4,-8)$. By looking at the sketch, we see that the region is bounded by the points $(0,0),(3,0)$ and $(-3,6)$.

By dropping a line from the intersection point to the x-axis, we make a triangle. The triangle has base 3 and height 6 , so has area $A_{1}=9$.
If we add the triangular area to the shaded region, we get a region bounded by the curve and the x-axis, which we can find by integration.

The curved area is given by

$$
\begin{aligned}
A_{2} & =\int_{-3}^{3}-(x+4)(x-3) \mathrm{d} x \\
& =\int_{-3}^{3}-x^{2}-x+12 \mathrm{~d} x \\
& =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+12 x\right]_{-3}^{3}=54
\end{aligned}
$$

Therefore the shaded area is

$$
A=A_{2}-A_{1}=54-9=45
$$

17. First, we label the sketch. The curve intersects the x-axis at $x=-4,2$, and the line intersects the x-axis at $x=-\frac{4}{3}$. The curve and line intersect when:

$$
\begin{aligned}
-(x+4)(x-2) & =-3 x-4 \\
0 & =-x-12+x^{2} \\
0 & =(x+3)(x-4) \\
x & =-3,4
\end{aligned}
$$

and substitution into either equation gives the intersection points as $(-3,5),(4,-16)$. By looking at the sketch, we see that the region is bounded by the points $\left(-\frac{4}{3}, 0\right),(2,0)$ and $(4,-16)$.

By dropping a line from the intersection point to the x-axis, we make a triangle which contains the shaded region. The triangle has base $\frac{16}{3}$ and height 16 , so has area $A_{1}=\frac{128}{3}$.

The remaining curved area is bounded by the curve and the x-axis, which we can find by integration. The curved region is below the axis, so the area is given by

$$
\begin{aligned}
A_{2} & =-\int_{2}^{4}-(x+4)(x-2) \mathrm{d} x \\
& =-\int_{2}^{4}-x^{2}-2 x+8 \mathrm{~d} x \\
& =-\left[-\frac{1}{3} x^{3}-x^{2}+8 x\right]_{2}^{4}=\frac{44}{3}
\end{aligned}
$$

Therefore the shaded area is

$$
A=A_{1}-A_{2}=\frac{128}{3}-\frac{44}{3}=28
$$

18. First, we label the sketch. The curve intersects the x-axis at $x=-5,4$, and the line intersects the x-axis at $x=\frac{5}{3}$. The curve and line intersect when:

$$
\begin{aligned}
-(x+5)(x-4) & =-3 x+5 \\
0 & =-2 x-15+x^{2} \\
0 & =(x+3)(x-5) \\
x & =-3,5
\end{aligned}
$$

and substitution into either equation gives the intersection points as $(-3,14),(5,-10)$. By looking at the sketch, we see that the region is bounded by the points $\left(\frac{5}{3}, 0\right),(-5,0)$ and $(-3,14)$.

If we drop a line from the intersection point to the x-axis, we divide the region into two areas: a triangle, and a region which is bounded by the curve and the x-axis. The triangle has base $\frac{14}{3}$ and height 14 , so has area $A_{1}=\frac{98}{3}$.

The curved area is given by

$$
\begin{aligned}
A_{2} & =\int_{-5}^{-3}-(x+5)(x-4) \mathrm{d} x \\
& =\int_{-5}^{-3}-x^{2}-x+20 \mathrm{~d} x \\
& =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+20 x\right]_{-5}^{-3}=\frac{46}{3}
\end{aligned}
$$

Therefore the shaded area is

$$
A=A_{1}+A_{2}=\frac{98}{3}+\frac{46}{3}=48
$$

19. First, we label the sketch. The curve intersects the x-axis at $x=-3,-1$, and the line intersects the x-axis at $x=-\frac{9}{5}$. The curve and line intersect when:

$$
\begin{aligned}
-(x+3)(x+1) & =-5 x-9 \\
0 & =-x-6+x^{2} \\
0 & =(x+2)(x-3) \\
x & =-2,3
\end{aligned}
$$

and substitution into either equation gives the intersection points as $(-2,1),(3,-24)$. By looking at the sketch, we see that the region is bounded by the points $\left(-\frac{9}{5}, 0\right),(-1,0)$ and $(3,-24)$.

By dropping a line from the intersection point to the x-axis, we make a triangle which contains the shaded region. The triangle has base $\frac{24}{5}$ and height 24 , so has area $A_{1}=\frac{288}{5}$.

The remaining curved area is bounded by the curve and the x-axis, which we can find by integration. The curved region is below the axis, so the area is given by

$$
\begin{aligned}
A_{2} & =-\int_{-1}^{3}-(x+3)(x+1) \mathrm{d} x \\
& =-\int_{-1}^{3}-x^{2}-4 x-3 \mathrm{~d} x \\
& =-\left[-\frac{1}{3} x^{3}-2 x^{2}-3 x\right]_{-1}^{3}=\frac{112}{3}
\end{aligned}
$$

Therefore the shaded area is

$$
A=A_{1}-A_{2}=\frac{288}{5}-\frac{112}{3}=\frac{304}{15}
$$

20. First, we label the sketch. The curve intersects the x-axis at $x=-4,4$, and the line intersects the x-axis at $x=\frac{11}{4}$. The curve and line intersect when:

$$
\begin{aligned}
(x+4)(x-4) & =-11+4 x \\
0 & =5+4 x-x^{2} \\
0 & =(1+x)(5-x) \\
x & =-1,5
\end{aligned}
$$

and substitution into either equation gives the intersection points as $(-1,-15),(5,9)$. By looking at the sketch, we see that the region is bounded by the points $\left(\frac{11}{4}, 0\right),(4,0)$ and $(-1,-15)$.

By dropping a line from the intersection point to the x-axis, we make a triangle. The triangle has base $\frac{15}{4}$ and height 15 , so has area $A_{1}=\frac{225}{8}$.
If we add the triangular area to the shaded region, we get a region bounded by the curve and the x-axis, which we can find by integration.

The curved region is below the axis, so the area is given by

$$
\begin{aligned}
A_{2} & =-\int_{-1}^{4}(x+4)(x-4) \mathrm{d} x \\
& =-\int_{-1}^{4} x^{2}-16 \mathrm{~d} x \\
& =-\left[\frac{1}{3} x^{3}-16 x\right]_{-1}^{4}=\frac{175}{3}
\end{aligned}
$$

Therefore the shaded area is

$$
A=A_{2}-A_{1}=\frac{175}{3}-\frac{225}{8}=\frac{725}{24}
$$

21. The curves intesect when

$$
\begin{aligned}
(x+4)(x-1) & =-(x+4)(x+1)(x-1) \\
-(x+1) & =1 \\
x & =-2
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-4}^{-2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{-2}^{1}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-4}^{-2}(x+4)(x-1)+(x+4)(x+1)(x-1) \mathrm{d} x & & =\int_{-2}^{1}-(x+4)(x+1)(x-1)-(x+4)(x-1) \mathrm{d} x \\
& =\int_{-4}^{-2} 5 x^{2}+2 x-8+x^{3} \mathrm{~d} x & & =\int_{-2}^{1}-x^{3}-5 x^{2}-2 x+8 \mathrm{~d} x \\
& =\left[\frac{5}{3} x^{3}+x^{2}-8 x+\frac{1}{4} x^{4}\right]_{-4}^{-2} & & =\left[-\frac{1}{4} x^{4}-\frac{5}{3} x^{3}-x^{2}+8 x\right]_{-2}^{1} \\
& =\frac{16}{3} & & =\frac{63}{4}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{16}{3}+\frac{63}{4}=\frac{253}{12}
$$

22. The curves intesect when

$$
\begin{aligned}
-(x+4)(x-1) & =(x+4)(x+1)(x-1) \\
-(x+1) & =1 \\
x & =-2
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-4}^{-2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{-2}^{1}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-4}^{-2}(x+4)(x+1)(x-1)+(x+4)(x-1) \mathrm{d} x & & =\int_{-2}^{1}-(x+4)(x-1)-(x+4)(x+1)(x-1) \mathrm{d} x \\
& =\int_{-4}^{-2} x^{3}+5 x^{2}+2 x-8 \mathrm{~d} x & & =\int_{-2}^{1}-5 x^{2}-2 x+8-x^{3} \mathrm{~d} x \\
& =\left[\frac{1}{4} x^{4}+\frac{5}{3} x^{3}+x^{2}-8 x\right]_{-4}^{-2} & & =\left[-\frac{5}{3} x^{3}-x^{2}+8 x-\frac{1}{4} x^{4}\right]_{-2}^{1} \\
& =\frac{16}{3} & & =\frac{63}{4}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{16}{3}+\frac{63}{4}=\frac{253}{12}
$$

23. The curves intesect when

$$
\begin{aligned}
-(x+1)(x-4) & =-(x+1)(x-1)(x-4) \\
x-1 & =1 \\
x & =2
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-1}^{2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{2}^{4}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-1}^{2}-(x+1)(x-4)+(x+1)(x-1)(x-4) \mathrm{d} x & & =\int_{2}^{4}-(x+1)(x-1)(x-4)+(x+1)(x-4) \mathrm{d} x \\
& =\int_{-1}^{2}-5 x^{2}+2 x+8+x^{3} \mathrm{~d} x & & =\int_{2}^{4}-x^{3}+5 x^{2}-2 x-8 \mathrm{~d} x \\
& =\left[-\frac{5}{3} x^{3}+x^{2}+8 x+\frac{1}{4} x^{4}\right]_{-1}^{2} & & =\left[-\frac{1}{4} x^{4}+\frac{5}{3} x^{3}-x^{2}-8 x\right]_{2}^{4} \\
& =\frac{63}{4} & & =\frac{16}{3}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{63}{4}+\frac{16}{3}=\frac{253}{12}
$$

24. The curves intesect when

$$
\begin{aligned}
(x+1)(x-5) & =-(x+1)(x-3)(x-5) \\
-(x-3) & =1 \\
x & =2
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-1}^{2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{2}^{5}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-1}^{2}(x+1)(x-5)+(x+1)(x-3)(x-5) \mathrm{d} x & & =\int_{2}^{5}-(x+1)(x-3)(x-5)-(x+1)(x-5) \mathrm{d} x \\
& =\int_{-1}^{2}-6 x^{2}+3 x+10+x^{3} \mathrm{~d} x & & =\int_{2}^{5}-x^{3}+6 x^{2}-3 x-10 \mathrm{~d} x \\
& =\left[-2 x^{3}+\frac{3}{2} x^{2}+10 x+\frac{1}{4} x^{4}\right]_{-1}^{2} & & =\left[-\frac{1}{4} x^{4}+2 x^{3}-\frac{3}{2} x^{2}-10 x\right]_{2}^{5} \\
& =\frac{81}{4} & & =\frac{81}{4}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{81}{4}+\frac{81}{4}=\frac{81}{2}
$$

25. The curves intesect when

$$
\begin{aligned}
(x+4)(x-5) & =-(x+4)(x-3)(x-5) \\
-(x-3) & =1 \\
x & =2
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-4}^{2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{2}^{5}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-4}^{2}(x+4)(x-5)+(x+4)(x-3)(x-5) \mathrm{d} x & & =\int_{2}^{5}-(x+4)(x-3)(x-5)-(x+4)(x-5) \mathrm{d} x \\
& =\int_{-4}^{2}-3 x^{2}-18 x+40+x^{3} \mathrm{~d} x & & =\int_{2}^{5}-x^{3}+3 x^{2}+18 x-40 \mathrm{~d} x \\
& =\left[-x^{3}-9 x^{2}+40 x+\frac{1}{4} x^{4}\right]_{-4}^{2} & & =\left[-\frac{1}{4} x^{4}+x^{3}+9 x^{2}-40 x\right]_{2}^{5} \\
& =216 & & =\frac{135}{4}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=216+\frac{135}{4}=\frac{999}{4}
$$

26. First we find the equations of the normals. The gradient of a tangent to $y=\frac{1}{2} x^{2}$ is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x
$$

Therefore the gradient of the normal at $x=-1$ is 1 , and at $x=1$ is -1

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{1}{2} & =x-1 \times(-1) \\
y & =x+\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{1}{2} & =-(x-) \\
y & =-x+\frac{3}{2}
\end{aligned}
$$

The lines intersect when

$$
\begin{aligned}
x+\frac{3}{2} & =-x+\frac{3}{2} \\
x & =0
\end{aligned}
$$

Now we sketch the curve:

$$
\begin{aligned}
A_{1} & =\int_{-1}^{0}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-1}^{0}\left(x+\frac{3}{2}\right)-\frac{1}{2} x^{2} \mathrm{~d} x \\
& =\int_{-1}^{0} x+\frac{3}{2}-\frac{1}{2} x^{2} \mathrm{~d} x \\
& =\left[\frac{1}{2} x^{2}+\frac{3}{2} x-\frac{1}{6} x^{3}\right]_{-1}^{0} \\
& =\frac{5}{6}
\end{aligned}
$$

By symmetry,

$$
A_{1}=A_{2} \Longrightarrow A=A_{1}+A_{2}=\frac{5}{6}+\frac{5}{6}=\frac{5}{3}
$$

27. First we find the equations of the normals. The gradient of a tangent to $y=\frac{1}{2} x^{2}$ is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x
$$

Therefore the gradient of the normal at $x=-2$ is $\frac{1}{2}$, and at $x=1$ is -1

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{1}{2}(x-(-2)) & y-\frac{1}{2} & =-(x-) \\
y & =\frac{1}{2} x+3 & y & =-x+\frac{3}{2}
\end{array}
$$

The lines intersect when

$$
\begin{aligned}
\frac{1}{2} x+3 & =-x+\frac{3}{2} \\
x & =-1
\end{aligned}
$$

Now we sketch the curve:

$$
\begin{aligned}
A_{1} & =\int_{-2}^{-1}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{-1}^{1}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-2}^{-1}\left(\frac{1}{2} x+3\right)-\frac{1}{2} x^{2} \mathrm{~d} x & & =\int_{-1}^{1}\left(-x+\frac{3}{2}\right)-\frac{1}{2} x^{2} \mathrm{~d} x \\
& =\int_{-2}^{-1} \frac{1}{2} x+3-\frac{1}{2} x^{2} \mathrm{~d} x & & =\int_{-1}^{1}-x+\frac{3}{2}-\frac{1}{2} x^{2} \mathrm{~d} x \\
& =\left[\frac{1}{4} x^{2}+3 x-\frac{1}{6} x^{3}\right]_{-2}^{-1} & & =\left[-\frac{1}{2} x^{2}+\frac{3}{2} x-\frac{1}{6} x^{3}\right]_{-1}^{1} \\
& =\frac{13}{12} & & =\frac{8}{3}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{13}{12}+\frac{8}{3}=\frac{15}{4}
$$

28. First we find the equations of the normals. The gradient of a tangent to $y=\frac{1}{4} x^{2}$ is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x
$$

Therefore the gradient of the normal at $x=-2$ is 1 , and at $x=1$ is -2

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =x-1 \times(-2) & y-\frac{1}{4} & =-2(x-1) \\
y & =x+3 & y & =-2 x+\frac{9}{4}
\end{array}
$$

The lines intersect when

$$
\begin{aligned}
x+3 & =-2 x+\frac{9}{4} \\
x & =-\frac{1}{4}
\end{aligned}
$$

Now we sketch the curve:

$$
\begin{aligned}
A_{1} & =\int_{-2}^{-\frac{1}{4}}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{-\frac{1}{4}}^{1}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-2}^{-\frac{1}{4}}(x+3)-\frac{1}{4} x^{2} \mathrm{~d} x & & =\int_{-\frac{1}{4}}^{1}\left(-2 x+\frac{9}{4}\right)-\frac{1}{4} x^{2} \mathrm{~d} x \\
& =\int_{-2}^{-\frac{1}{4}} x+3-\frac{1}{4} x^{2} \mathrm{~d} x & & =\int_{-\frac{1}{4}}^{1}-2 x+\frac{9}{4}-\frac{1}{4} x^{2} \mathrm{~d} x \\
& =\left[\frac{1}{2} x^{2}+3 x-\frac{1}{12} x^{3}\right]_{-2}^{-\frac{1}{4}} & & =\left[-x^{2}+\frac{9}{4} x-\frac{1}{12} x^{3}\right]_{-\frac{1}{4}}^{1} \\
& =\frac{2009}{768} & & =\frac{1375}{768}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{2009}{768}+\frac{1375}{768}=\frac{141}{32}
$$

29. First we find the equations of the normals. The gradient of a tangent to $y=\frac{1}{4} x^{2}$ is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x
$$

Therefore the gradient of the normal at $x=-1$ is 2 , and at $x=1$ is -2

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{1}{4} & =2(x-(-1)) \\
y & =2 x+\frac{9}{4}
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{1}{4} & =-2(x-1) \\
y & =-2 x+\frac{9}{4}
\end{aligned}
$$

The lines intersect when

$$
\begin{aligned}
2 x+\frac{9}{4} & =-2 x+\frac{9}{4} \\
x & =0
\end{aligned}
$$

Now we sketch the curve:

$$
\begin{aligned}
A_{1} & =\int_{-1}^{0}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-1}^{0}\left(2 x+\frac{9}{4}\right)-\frac{1}{4} x^{2} \mathrm{~d} x \\
& =\int_{-1}^{0} 2 x+\frac{9}{4}-\frac{1}{4} x^{2} \mathrm{~d} x \\
& =\left[x^{2}+\frac{9}{4} x-\frac{1}{12} x^{3}\right]_{-1}^{0} \\
& =\frac{7}{6}
\end{aligned}
$$

By symmetry,

$$
A_{1}=A_{2} \Longrightarrow A=A_{1}+A_{2}=\frac{7}{6}+\frac{7}{6}=\frac{7}{3}
$$

30. First we find the equations of the normals. The gradient of a tangent to $y=\frac{1}{3} x^{2}$ is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{3} x
$$

Therefore the gradient of the normal at $x=-3$ is $\frac{1}{2}$, and at $x=2$ is $-\frac{3}{4}$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =\frac{1}{2}(x-(-3)) \\
y & =\frac{1}{2} x+\frac{9}{2}
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{4}{3} & =-\frac{3}{4}(x-2) \\
y & =-\frac{3}{4} x+\frac{17}{6}
\end{aligned}
$$

The lines intersect when

$$
\begin{aligned}
\frac{1}{2} x+\frac{9}{2} & =-\frac{3}{4} x+\frac{17}{6} \\
x & =-\frac{4}{3}
\end{aligned}
$$

Now we sketch the curve:

$$
\begin{aligned}
A_{1} & =\int_{-3}^{-\frac{4}{3}}(\text { top curve }- \text { bottom curve }) \mathrm{d} x & A_{2} & =\int_{-\frac{4}{3}}^{2}(\text { top curve }- \text { bottom curve }) \mathrm{d} x \\
& =\int_{-3}^{-\frac{4}{3}}\left(\frac{1}{2} x+\frac{9}{2}\right)-\frac{1}{3} x^{2} \mathrm{~d} x & & =\int_{-\frac{4}{3}}^{2}\left(-\frac{3}{4} x+\frac{17}{6}\right)-\frac{1}{3} x^{2} \mathrm{~d} x \\
& =\int_{-3}^{-\frac{4}{3}} \frac{1}{2} x+\frac{9}{2}-\frac{1}{3} x^{2} \mathrm{~d} x & & =\int_{-\frac{4}{3}}^{2}-\frac{3}{4} x+\frac{17}{6}-\frac{1}{3} x^{2} \mathrm{~d} x \\
& =\left[\frac{1}{4} x^{2}+\frac{9}{2} x-\frac{1}{9} x^{3}\right]_{-3}^{-\frac{4}{3}} & & =\left[-\frac{3}{8} x^{2}+\frac{17}{6} x-\frac{1}{9} x^{3}\right]_{-\frac{4}{3}}^{2} \\
& =\frac{2875}{972} & & =\frac{3625}{486}
\end{aligned}
$$

Therefore,

$$
A=A_{1}+A_{2}=\frac{2875}{972}+\frac{3625}{486}=\frac{125}{12}
$$

