AQA A level Maths Mechanics Kinematics

Section 1: Motion in two dimensions

Exercise level 2

- 1. Particle P is moving in the x-y plane with the origin at O. The position vector of P with respect to O is $\mathbf{r} = 2t^3\mathbf{i} + 3t^2\mathbf{j}$. Find the velocity vector and the acceleration vector for P and hence the magnitudes of the velocity and acceleration when t = 3.
- 2. A force $\mathbf{F} = 4t\mathbf{i} + 6\mathbf{j}$ acts on a particle of mass 2 kg. Given that the particle has an initial velocity of $5\mathbf{j}$ at the origin find the velocity and displacement when t = 3.
- 3. At time t the position vector of particle P of mass 4 kg is $\mathbf{r} = 6t\mathbf{i} 4t^2\mathbf{j}$. Force **F** acts on P. Find the magnitude of **F**.
- 4. The position vector of a radio controlled car is $\mathbf{r} = (2t 1)\mathbf{i} t^2\mathbf{j}$
 - (i) Find the velocity at time t.
 - (ii) Find the initial direction of motion.
 - (iii) Show that the acceleration is constant.
 - (iv) Explain why the car can never move in a direction at right angles to the original direction.
 - (v) Find a Cartesian equation for the path of the car.
- 5. Two forces $\mathbf{F} = 12\mathbf{i} 2\mathbf{j}$ and $\mathbf{T} = 10\mathbf{i} + 12\mathbf{j}$ act on an object of mass 20 kg.
 - (i) Find the resultant force on the object.
 - (ii) Find the acceleration of the object.
 - (iii) Given that the object is initially at rest at a point with position vector $3\mathbf{j}$ find its position vector after t seconds.
- 6. The position vector of a particle P is $\mathbf{r} = (t^2 4t)\mathbf{i} + (t^3 + ft^2)\mathbf{j}$ for t > 0, where f is a constant. Given that the particle comes to instantaneous rest, find the value of f.
- 7. $\mathbf{v} = t^2 \mathbf{i} + 3t \mathbf{j}$ and when t = 0, $\mathbf{s} = 18\mathbf{i} 24\mathbf{j}$. Find the acceleration and displacement when t = 3.

