Section 1: Motion in two dimensions

Exercise level 3 (Extension)

1. A particle moves so that its position vector in terms of the time t seconds is given by $\mathbf{r}=\binom{1-t^{2}}{t^{2}-3 t}$ metres.
(i) Show that the particle is never at the origin.
(ii) Find the time at which the particle is moving parallel to the y-axis.
(iii) Show that when $t \neq 0$ the particle's velocity is never perpendicular to its position vector.
(iv) Show that the velocity of the particle is never parallel to its position vector.
(v) Find the minimum distance of the particle from the origin and sketch its path for $-1<t<1$.
2. A particle moves so that its position vector in terms of the time $t(>0)$ seconds is given by $\mathbf{r}=\left(\begin{array}{c}5 \cos t \\ 5 \sin t \\ 4 t\end{array}\right)$ metres.
(i) Describe its motion in words.
(ii) Find an expression in terms of t for the distance of the particle from O.
(iii) When is the position vector of the particle inclined at 45° to the horizontal?
3. In a clay pigeon shoot the target is launched vertically from ground level with speed v. At a time T later the competitor fires a rifle inclined at α to the horizontal. The competitor is also at ground level and is a distance l from the launcher. The speed of the bullet leaving the rifle is u. Show that if the competitor scores a hit then

$$
l \sin \alpha-\left(v T-\frac{1}{2} g T^{2}\right) \cos \alpha=\frac{v-g T}{u} l
$$

[1993 STEP Mathematics q12 - part; this question appears by permission of Cambridge Assessment.]

