1	(a)	Circle the equivalent express	ion to $\left(\sqrt[3]{x}\right)^4$		
		$x^{\frac{3}{4}}$	$\frac{4}{\sqrt[3]{x}}$	$x^{\frac{4}{3}}$	$x^{4\frac{1}{3}}$
					[1 mark]
1	(b)	Write down the value of p and	d q given that:		
		(i) $9^p = 1$			
		(ii) $\frac{1}{81} = 3^q$			
					[2 marks]
2	(a)	Simplify the expression $(5 + \sqrt{5})$	$\sqrt{2}\left(5-2\sqrt{2}\right)$		
					[2 marks]
2	(b)	Simplify $\frac{4}{\sqrt{5}-3}$ by rationalis	ing the denominator		
					[3 marks]
3	(a)	Factorise the expression x^2 –	2		
					[1 mark]
3	(b)	Factorise the expression $6x^2$	-5x-21		
					[2 marks]
4	(a)	Sketch the curve $y = x^2 - x - $ the <i>y</i> -axis.	4, indicating the exa	ct intercepts on the	x-axis and
					[4 marks]
4	(b)	Complete the square on the	curve $y = x^2 - x - 4$		
					[2 marks]
4	(c)	State the minimum point and	any lines of symmetr	У	
					[2 marks]
		Section B	: A bit more thinking	g	

5 A parallelogram has base $(3+5\sqrt{2})$ cm and area $(10+3\sqrt{2})$ cm².

Find the perpendicular height in its simplest form

[4 marks]

Solve the quadratic equation
$$\frac{5}{(x+3)} + \frac{1}{(x-1)} = 2$$

[4 marks]

7 Solve
$$x^{\frac{2}{3}} - 17x^{\frac{1}{3}} + 16 = 0$$

6

		Section A: The basics	
1		Calculate the discriminant of the quadratic $y = 3x^2 - 5x + 4$.	
		Use this to determine how many solutions the equation has.	
		[[3 marks]
2		Solve the inequality $3x + 4 < 5x - 2$	
		[[2 marks]
3		Find the points of intersection between the graph $y = x^2 + 5x - 3$ and the lin	ie
		y = 2x + 1.	
		[[3 marks]
4		Expand $(2x + 3)(x^2 - 3x + 6)$	
		[[2 marks]
5	(a)	Using the Factor Theorem, show that $x - 2$ is a factor of	
		$p(x) = x^3 + 4x^2 - 19x + 14$	
		[2	? marks]
	(b)	Hence, find the quotient and express $x^3 + 4x^2 - 19x + 14$ as a product of 3 I factors.	linear

Simultaneous equations, linear and quadratic inequalities

[3 marks]

6 Given that x + 2 and x - 3 are factors of the polynomial $p(x) = 3x^3 + bx^2 - cx + 5$, find the value of *b* and *c*.

[4 marks]

7 Prove that the line y = x - 5 does not intersect with the quadratic $y = x^2 + 6x + 13$

[4 marks]

8 Use the sketch below to identify the cubic equation in the form $y = x^3 + ax^2 + bx + c$, where *a*, *b* and *c* are integers.

[4 marks]

Given that the cubic has a factor of x - 2, solve the inequality $x^3 + 2x^2 - 13x + 10 > 0$

9

1 Which of the following options represents the transformation that maps the graph of onto the graph of $y = \frac{1}{4}|x+2|$?

Circle your answer.

A stretch, parallel to the *x*-axis, scale factor $\frac{1}{4}$ A stretch, parallel to the *x*-axis, scale factor 4 A stretch, parallel to the *y*-axis, scale factor $\frac{1}{4}$ A stretch, parallel to the *y*-axis, scale factor $\frac{1}{4}$ A stretch, parallel to the *y*-axis, scale factor $\frac{1}{4}$ A stretch, parallel to the *y*-axis, scale

2 Sketch the graph of the curve with equation
$$y = (2x+1)(x-3)^2$$

[2 marks]

3 (a) The curve with equation
$$y = \frac{5}{x^2}$$
 is translated by vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

Write down the equation of the transformed curve.

[1 mark]

3 (b) Sketch the transformed curve, labelling the equations of its asymptotes

[2 marks]

4 (a) Sketch, on the same set of axes, the graphs of the curves $y = \frac{1}{x+1}$ and y = (2x+5)(x+1)(x-3).

Label the points where the curves cross the axes, where the curves intersect and any asymptotes.

[4 marks]

$$\frac{1}{x+1} = (2x+5)(x+1)(x-3)$$

[1 mark]

5 (a) The average velocity, *V* metres per second, at which a runner completes a race is inversely proportional to the total time, *T* seconds, it takes for them to complete the race.

Sketch a graph of V against T for positive values of T

[2 marks]

5 (b) Alex completes the race in 70 seconds and his average velocity is 6 metres per second.

Find the time it takes Dexter to complete the race, given that his average speed is 5.6 metres per second.

[2 marks]

6 The curve with equation
$$y = \frac{3}{x^2}$$
 is stretched by scale factor 4 parallel to the *x*-axis.
This transformed curve could also be obtained by stretching $y = \frac{3}{x^2}$ by scale factor *k* parallel to the *y*-axis.
State the value of *k*.
[2 marks]
7 State the transformation that maps the graph of $y = 4x^2 + 3$ onto the graph of $y = x^2 + 3$
[2 marks]
8 (a) $f(x) = 54a\sqrt{a}x^3 + 27ax^2 - 51\sqrt{a}x + 12$, where *a* is a non-zero constant.
Show that a stretch scale factor $3\sqrt{a}$ parallel to the *x*-axis transforms the curve $y = f(x)$ onto the curve $y = g(x)$, where $g(x) = 2x^3 + 3x^2 - 17x + 12$
[3 marks]
8 (b) Hence find the solutions to $f(x) = 0$, giving your answers in terms of *a*.
[3 marks]
9 (a) The line $y = kx$, where *k* is a non-zero constant, touches the curve $y = \frac{1}{x-3}$ at exactly one point.
Find the value of *k*.
[3 marks]
9 (b) Using the value of *k* found in part (a), sketch the curves $y = \frac{1}{x-3}$ and $y = kx$ on the same set of axes.
You should label the point of intersection between the two curves.
[3 marks]
9 (c) Explain why it is necessary to have the condition that *k* is a non-zero constant.

[1 mark]

1		Write down the equation of the line with gradient 3 through the point (4, -1) in the form $y - y_1 = m(x - x_1)$.	
		[1 mar	k]
2	(a)	Find the gradient and the <i>x</i> - and <i>y</i> -intercepts of the line with equation $2x+3y-7=0$.	
		[3 mark	s]
2	(b)	Find the equation of a line that is parallel to $2x+3y-7=0$ through the point (3, 5).	
		[3 mark	s]
2	(c)	When does the line $y = 2x + 1$ intersect the line $2x + 3y - 7 = 0$?	
		[2 mark	s]
3	(a)	The point <i>P</i> has coordinates $(-2, 2)$, the point <i>Q</i> has coordinates $(1, 6)$ and the point <i>R</i> has coordinates $(5, 3)$.	
		Show that PQ and QR are perpendicular.	
		[3 mark	s]
3	(b)	Find the distance of RQ.	
		[2 mark	s]
4		Find the equation of a circle with centre $(2, -5)$ and diameter 16.	
		[2 mark	s]
5		Find the centre and radius of the circle with equation $x^2 + y^2 + 4x - 6y - 8 = 0$.	

[3 marks]

6 A circle passes through points *A* (7, 4), *B* (10, 6) and *C* (12, 3). Show that *AC* must be the diameter of the circle.

[4 marks]

7 The points A(1, 4) and B(5, 1) lie on a circle. The line segment AB is a chord. Find the equation of a diameter of the circle.

[5 marks]

8 A line has equation y = k, where k is a constant. For which values of k does the line not intersect the circle with equation $x^2 + 3x + y^2 + 2y - \frac{3}{4} = 0$.

1 (a) Express the first four terms of the expansion $(2 - 3x)^8$ in ascending powers of x.

[4 marks]

2 Find the coefficient of
$$x^5$$
 in the expansion $\left(2 + \frac{1}{2}x\right)^{11}$

[3 marks]

3 (a) By first completing the square, find the minimum point for the quadratic $y = x^2 + 7x - 30$.

[3 marks]

3 (b) Hence, sketch the graph $y = x^2 + 7x - 30$, including labelling where it crosses the axes.

4	(a)	Using the Factor Theorem, show that $x + 3$ is a factor of $p(x) = x^3 + 9x^2 + 2x^2$	27 <i>x</i> + 27
_			[2 marks]
4	(b)	Hence, or otherwise express $x^3 + 9x^2 + 27x + 27$ as a product of linear fact	ors.
			[2 marks]
4	(c)	Hence, describe the transformation from $y = x^3 + 9x^2 + 27x + 27$ onto $y = (x^2 + 2)^2$	$(x-2)^3 +$
			[3 marks]
5	(a)	Using the binomial expansion, or otherwise, express $(2 + 3x)^3$ in the form $a + bx + cx^2 + x^3$.	
			[2 marks]
5	(b)	Hence find the coefficient of x in the expansion $(2 + 3x)^3(1 - x^{-1})^5$.	
			[4 marks]
6		Show with clear steps and a clear conclusion whether the line $y = 3x + 2$ is tangent to the circle $(y - 1)^2 + (x - 3)^2 = 25$.	a

1 The graph of y = f(x) is shown in the diagram.

Which of the following graphs is a sketch of its gradient function? Circle your answer

[1 mark]

2 (a) Use the binomial expansion to express $(2+h)^3$ in the form $h^3 + 6h^2 + ph + q$, where *p* and *q* are integers to be determined.

[2 marks]

2 (b) The curve with equation $y = x^3 - 5x$ passes through the point P(2, -2) and the point Q, where x = 2 + h.

Using differentiation from first principles, find the gradient of the tangent to the curve at the point P.

[3 marks]

Differentiation 1

3 (a) Find
$$\frac{dy}{dx}$$
 when $y = x^4 - 3x^3 + 2x + 14$ [2 marks]

3 (b) Find
$$\frac{d^2y}{dx^2}$$

[1 mark]

4 Given
$$f(x) = (2x-3)(4+7x-2x^2)$$
, find $f'(x)$.

[3 marks]

5 (a) Express
$$x^2\sqrt{x}$$
 in the form x^p , where p is a rational number.

[1 mark]

5 (b) Hence find
$$\frac{dy}{dx}$$
 when $y = x^2 \sqrt{x} - \frac{3}{x}$.

[2 marks]

6

Section B: A bit more thinking

Samir, a maths student, is using differentiation from first principles to evaluate the gradient of the curve $y = x^2 + 6x$ at the point where x = -4.

His working is as follows:

Step 1 When
$$x = -4$$
, $y = 16 - 24 = -8$
 $y = (-4 + h)^2 + 6(-4 + h)$
Step 2 When $x = -4 + h$, $= 16 + h^2 - 24 + 6h$
 $= h^2 + 6h - 8$

Step 3 Gradient of chord
$$= \frac{(h^2 + 6h - 8) - (-8)}{(-4 + h) - (-4)} = \frac{h^2 + 6h}{h} = h + 6$$

Step 4 Let
$$h = 0$$
. Then $\frac{dy}{dx} = 6$

There are two errors in Samir's working. Explain where these two errors occur.

[2 marks]

7 (a) The height of a mountain, *h* kilometres, at a horizontal distance of *x* kilometres from a starting point, can be modelled by the equation $h = 0.75x^{\frac{4}{3}} - 0.3x^2$. Find $\frac{dh}{dx}$ when x = 1 and interpret this value in context.

[3 marks]

7 (b) Find
$$\frac{d^2h}{dx^2}$$
 when $x = 1$ and interpret this value in context

[2 marks]

7 (c) State one limitation of using the equation $h = 0.75x^{\frac{4}{3}} - 0.3x^2$ to measure the actual height of the mountain when at a horizontal distance of *x* kilometres from the starting point.

[1 mark]

8 Given
$$f(x) = (5 + 2\sqrt{x})^3$$
, find $f'(x)$.

[4 marks]

9 Find the coordinates of the points on the curve $y = 3x^3 + \frac{4}{x}$ where the gradient is equal to -35.

1 (a) Find the gradient of the curve
$$y = \sqrt{x} + \frac{1}{18}x^3$$
 at the point where $x = 9$.

[3 marks]

1 (b) Hence find an equation for the normal to the curve at the point
$$\left(9, \frac{87}{2}\right)$$
.

[2 marks]

2 (a) Given
$$y = 12x^2 - \frac{3}{x} + \frac{4}{5}$$
, find an expression for $\frac{dy}{dx}$.

[2 marks]

[2 marks]

2 (c) Find an expression for $\frac{d^2 y}{dx^2}$ and hence determine the nature of the stationary point.

[2 marks]

3 (a) Given $f(x) = 2x^3 + 2x^2 - 42x + 15$, show that the values of x for which f(x) is decreasing satisfy the inequality $3x^2 + 2x - 21 < 0$.

[2 marks]

3 (b) Hence find the values of x for which f(x) is decreasing.

[2 marks]

Differentiation 2

Section B: A bit more thinking

4 (a) The average cost, $\pounds P$, of purchasing a return flight from Manchester to Greece *t* months after 1st January can be modelled by the equation:

$$P = 0.67t^3 - 13.32t^2 + 70t + 207$$

Use calculus to find the value of t at which the minimum average cost occurs and justify that it is a minimum.

[4 marks]

4 (b) Explain whether the value of *t* found in part (a) is realistic.

[1 mark]

5 The function $f(x) = \frac{8}{x^4} + x - 7$ has positive roots at the points A and B.

Find the *x*-coordinate of the point on the curve where the gradient is parallel to *AB*.

[3 marks]

6 The line
$$y = -\frac{1}{5}x$$
 is a normal to the curve $y = x\sqrt{x} - x + c$. Find the value of *c*.

[5 marks]

7 Prove that the function $f(x) = x^{\frac{5}{3}} - kx^{\frac{4}{3}} + k^2x$ is increasing for all non-zero values of the real constant *k*.

Section A: The basics

1 (a) A curve has gradient function given by
$$\frac{dy}{dx} = 3x^4 - 5x + 2$$

Find the general equation for this curve, giving your answer in the form y = f(x).

[2 marks]

1 (b) Given further that the curve passes through the point (2, 12), find the equation for the curve, giving your answer in the form y = f(x).

[2 marks]

2 (a) Express
$$\frac{2x-7x^2}{x^5}$$
 in the form $2x^p - 7x^q$

[1 mark]

2 (b) Hence find
$$\int \frac{2x-7x^2}{x^5} dx$$

[2 marks]

3 Evaluate $\int_{1}^{4} 6x^2 - \sqrt{x} \, dx$. You must show your working.

4 The diagram shows a shaded region *R* bounded by the curve $y = x^2 - 7$, the *x*-axis and the lines x = -1 and x = 2.

Find the area of R.

Fully justify your answer.

Section B: A bit more thinking

The diagram shows the graph of the curve $y = 2x^3 - 4x^2 + 5$

The curve intersects the *y*-axis at the point *A*.

The point *B* lies on the curve when x = 3

Find the area of the shaded region bounded by the curve and the line segment *AB*. Fully justify your answer.

[5 marks]

6 (a) The curve y = f(x) has a gradient function

$$f'(x) = \frac{2}{\sqrt{x}} - p\sqrt{x}$$

A is the point on the curve where $x = \frac{1}{4}$

The equation of the tangent to the curve at *A* is $y = \frac{5}{2}x + \frac{7}{8}$ Show that p = 3. Fully justify your answer

[2 marks]

6 (b) Find the equation of the curve, giving your answer in the form y = f(x)

[4 marks]

5

$$f(x) = \frac{8+3x}{x^3}$$

7

Find the value of the positive constant k such that $\int_{1}^{k} f(x) dx = 6$.

Fully justify your answer.

[6 marks]

Trigonometry 1

Section A: The basics

1	(a)	Circle the function that has a vertical line of symmetry at $y = 450^{\circ}$.			
		$y = \sin x$	$y = \cos x$	$y = \tan x$	
				[1 mark]	
1	(b)	Describe the symmetry and periodic	ity of the graph $=$ tan x .		
				[2 marks]	
2		Given that $\cos\theta = \frac{3}{5}$ and that θ is a	cute, find the exact values of	sin θ and tan θ .	
				[2 marks]	
3	(a)	Sketch the graph of $y = \cos x$ for -18	30º ≤ <i>x</i> ≤ 180 º.		
	. ,				
				[2 marks]	
3	(b)	Solve the equation $\cos x = -\frac{3}{4}$, givin	ng all the answers between C)° ≤ x ≤ 360 °	
		correct to three significant figures.			
				[2 marks]	
4	(a)	The triangle ABC , is such that $AB =$	3 cm, $BC = 5$ cm and $AC = 7$	7 cm.	
		The angle ABC is θ .			
		Find the value of θ .			
				[3 marks]	
4	(b)	Hence find the area of the triangle A	BC. Give vour answer in exa	act form.	
	()				
				[3 marks]	
5		Given that sin $x = 0.8$ find the values	s of sin(180° $-x$) and sin(180°	$0^{0} + x$).	

[2 marks]

6 A ship sails 5 km from S to T on a bearing of 062° and then 8 km from T to U on a bearing of 150° .

Calculate the distance SU giving your answer correct to two significant figures.

[3 marks]

7 (a) Three points of an equilateral triangle lie on a circumference of length 10π .

Show that the area of the triangle is given by $\frac{75\sqrt{3}}{4}$ cm².

[5 marks]

7 (b) Calculate the perimeter of the triangle, leave your answer in surd form.

[3 marks]

8 (a) Consider a triangle ABC such that $\angle BAC$ is equal to 30°, AB = x, BC = 4 and AC = 5.

Show with your reasoning why $x^2 - 5\sqrt{3}x + 9 = 0$.

[2 marks]

8 (b) Show that there are two solutions to the equation $x^2 - 5\sqrt{3x} + 9 = 0$ and interpret it in this context.

[2 marks]

1		Simplify $\frac{\cos^2}{1-\sin^2}$	$\frac{2}{\theta}$ n θ			
		Circle your an	nswer.			
		$1 - \sin heta$)	$1 + \cos \theta$	$1 + \sin \theta$	$1 - \cos heta$
						[1 mark]
2		Show that (sir	n $ heta$ + cos $ heta$)	$(2^2 + (\sin \theta - \cos \theta)^2 \equiv$	2	
						[3 marks]
3		Solve sin $x = -$	$-\cos x$ for C	$x^{0} \le x \le 180^{\circ}$		
						[2 marks]
4		Solve $\cos(\frac{x}{2})$	+ 115º) = -	0.5 for $0^{\circ} \le x \le 360^{\circ}$		
						[3 marks]
5	(a)	Show that $\frac{si}{1+}$	$\frac{in^2\theta}{\cos\theta} = 1 - e^{in^2\theta}$	$\cos heta$		

[2 marks]

5 (b) Hence solve $\frac{\sin^2 \theta}{1 + \cos \theta} + 3\cos^2 \theta = 3$ for $0^\circ \le \theta \le 360^\circ$, giving your answers to the nearest 0.1°.

	Solve 5 sin $x = 4 \cos x$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest 0).1º.
	[3	marks]
	Solve $sin(2x - 60^{\circ}) = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$	
	[4	marks]
a)	Solve the simultaneous equations $k \sin x = 3$, $k \cos x = 7$ for $0^{\circ} \le x \le 360^{\circ}$, given answers to the nearest 0.1°.	ving
	[3	marks]
b)	State the coordinates of the maximum and minimum values of $f(x) = k \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.	or
	[2	marks]
	a) b)	Solve 5 sin $x = 4 \cos x$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest 0. [3] Solve sin $(2x - 60^{\circ}) = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$ [4] (a) Solve the simultaneous equations $k \sin x = 3$, $k \cos x = 7$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest 0.1°. [3] (5) State the coordinates of the maximum and minimum values of $f(x) = k \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. [2] [2] [3] [3] [3] [4] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6

9 Prove that
$$\frac{\tan\theta\sin\theta}{1+\cos\theta} = \frac{1}{\cos\theta} - 1$$

Exponentials 1

Section A: The basics

1 (a) Circle the correct graph for the function $y = a^{(x+3)}$ where *a* is a constant such that a > 1.

Express $\log_b 15 - 3 \log_b 3 - 2$ as a single logarithm.

1

2

3

4

5

6

[3 marks]

Exponentials 1

Section B: A bit more thinking

7	Civen that $\log_{10} x = 550$ find the value of \log_{10}	1000
1	Given that $\log_{10} x = 550$, find the value of $\log_{10} x$	\sqrt{x}

[3 marks]

8	The tangent to the graph $y = e^{kx}$ at $x = 3$ has the equation $e^{b}y + 4x = 13$.
	Find the values of k and b .

[4 marks]

9 S	Solve $\ln x = \ln \theta$	$(x + 6) - \ln 6$	(x + 2).
------------	----------------------------	-------------------	----------

[5 marks]

10 Find the exact coordinates of the intersection of the line y = 4x + 7 and the normal to the curve $y = e^{3x}$ at x = 0.

1		Solve 4^{2x+5}	= 6								
		Circle your a	answer.								
		$x = \frac{1}{2}\log \frac{4}{2}$	$\frac{6}{4}$ - 5 x =	$=\frac{1}{2}(\log 6-5)$	og4) x	$=\frac{1}{2}\left(\log \frac{1}{2}\right)$	$9\frac{6}{4}-5$)	$x = \frac{1}{2}$	$\left(\frac{\log 6}{\log 4}\right)$	-5)
										[1	mark]
2		Solve 3^{x+2}	= 0.4 giving	your answe	r to 3 signi	ficant fig	gures.				
										[3	marks]
3	(a)	The tempe	rature <i>T</i> °C o	of a liquid at	time t minu	utes is g	iven by	y the	equat	ion	
		T = 50 + 35	$5e^{-0.8t}$ for $t \ge 1$	0							
		State the in	nitial tempera	ature of the li	quid.						
										[1	mark]
3	(b)	Calculate t	he rate of ch	ange of the	temperatu	e when	t = 2 r	ninu	tes		
Ŭ	()	Calculate			lomporatai		1 – 2 1	mina			
										[2]	marks]
3	(c)	Calculate to to 60°C.	o the neares	t second the	length of t	ime for	the ter	npei	rature t	o decr	ease
										[3	marks]
2	(d)	The model	roprosents	e cup of tea	cooling to r	oom te	mnerat	uro		-	-
J	(u)	Evolain wh	v the predict	ion made by	the model	for larc			ftmay	ha	
		inappropria	ate.	ion made by				030	i <i>i</i> may	be	
										[2	marks]
Ļ	(a)	The table sh	nows experin	nental values	s of x and y	/.				-	-
		x	1	3	5		7]			

By plotting a suitable straight line graph, show that *x* and *y* are related by the equation $y = kb^x$ where *k* and *b* are constants to be found.

1.11

0.277

4.43

[3 marks]

4 (b) Hence find y when x = 4

у

17.7

4

[1 mark]

5 Two years ago £200 was deposited in a bank account accruing compound interest. This has now increased to £240.

Assuming no more money (other than interest) is added to or taken from the account, how much money will the account contain after a further 10 years?

[5 marks]

The concentration of a particular drug in a patient's body decays exponentially. The initial dose given is 1.75 mg/ml and after five hours the concentration has dropped to 1.2 mg/ml.

Find to the nearest minute how much longer it will take for the concentration to drop to 0.8 mg/ml.

[6 marks]

Using the graph, express y in terms of x. Hence find y when x = 10.

6