Section A: The basics

1 (a) Circle the equivalent expression to $(\sqrt[3]{x})^{4}$
$x^{\frac{3}{4}}$
$\frac{4}{\sqrt[3]{x}}$
$x^{\frac{4}{3}}$

$$
x^{4 \frac{1}{3}}
$$

[1 mark]
1 (b) Write down the value of p and q given that:
(i) $9^{p}=1$
(ii) $\frac{1}{81}=3^{q}$

2 (a) Simplify the expression $(5+\sqrt{2})(5-2 \sqrt{2})$

2 (b) Simplify $\frac{4}{\sqrt{5}-3}$ by rationalising the denominator

3 (a) Factorise the expression $x^{2}-2$

3 (b) Factorise the expression $6 x^{2}-5 x-21$

4 (a) Sketch the curve $y=x^{2}-x-4$, indicating the exact intercepts on the x-axis and the y-axis.

4 (b) Complete the square on the curve $y=x^{2}-x-4$

4 (c) State the minimum point and any lines of symmetry

Section B: A bit more thinking

A parallelogram has base $(3+5 \sqrt{2}) \mathrm{cm}$ and area $(10+3 \sqrt{2}) \mathrm{cm}^{2}$.

Find the perpendicular height in its simplest form

6
Solve the quadratic equation $\frac{5}{(x+3)}+\frac{1}{(x-1)}=2$

7
Solve $x^{\frac{2}{3}}-17 x^{\frac{1}{3}}+16=0$

Section A: The basics

$1 \quad$ Calculate the discriminant of the quadratic $y=3 x^{2}-5 x+4$.
Use this to determine how many solutions the equation has.
[3 marks]

2
Solve the inequality $3 x+4<5 x-2$
[2 marks]

3
Find the points of intersection between the graph $y=x^{2}+5 x-3$ and the line $y=2 x+1$.

Expand $(2 x+3)\left(x^{2}-3 x+6\right)$

5 (a) Using the Factor Theorem, show that $x-2$ is a factor of $\mathrm{p}(x)=x^{3}+4 x^{2}-19 x+14$
[2 marks]
(b) Hence, find the quotient and express $x^{3}+4 x^{2}-19 x+14$ as a product of 3 linear factors.

Section B: A bit more thinking

$6 \quad$ Given that $x+2$ and $x-3$ are factors of the polynomial $\mathrm{p}(x)=3 x^{3}+b x^{2}-c x+5$, find the value of b and c.
[4 marks]
7 Prove that the line $y=x-5$ does not intersect with the quadratic $y=x^{2}+6 x+13$

8 Use the sketch below to identify the cubic equation in the form $y=x^{3}+a x^{2}+b x+c$, where a, b and c are integers.

[4 marks]
$9 \quad$ Given that the cubic has a factor of $x-2$, solve the inequality $x^{3}+2 x^{2}-13 x+10>0$

Section A: The basics

1
Which of the following options represents the transformation that maps the graph of onto the graph of $y=\frac{1}{4}|x+2|$?

Circle your answer.

A stretch, parallel to the x-axis, scale factor $\frac{1}{4}$
 A stretch, parallel to the x-axis, scale factor 4

A stretch, parallel
to the y-axis,
scale factor $\frac{1}{4}$

A stretch, parallel to the y-axis, scale factor 4
[1 marks]
2 Sketch the graph of the curve with equation $y=(2 x+1)(x-3)^{2}$

3 (a) The curve with equation $y=\frac{5}{x^{2}}$ is translated by vector $\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
Write down the equation of the transformed curve.
[1 mark]
3 (b) Sketch the transformed curve, labelling the equations of its asymptotes
[2 marks]
4 (a) Sketch, on the same set of axes, the graphs of the curves $y=\frac{1}{x+1}$ and $y=(2 x+5)(x+1)(x-3)$.

Label the points where the curves cross the axes, where the curves intersect and any asymptotes.
[4 marks]
4 (b) Hence state the number of real solutions to the equation

$$
\frac{1}{x+1}=(2 x+5)(x+1)(x-3)
$$

5 (a) The average velocity, V metres per second, at which a runner completes a race is inversely proportional to the total time, T seconds, it takes for them to complete the race.

Sketch a graph of V against T for positive values of T

[2 marks]

5 (b) Alex completes the race in 70 seconds and his average velocity is 6 metres per second.

Find the time it takes Dexter to complete the race, given that his average speed is 5.6 metres per second.

Section B: A bit more thinking

6
The curve with equation $y=\frac{3}{x^{2}}$ is stretched by scale factor 4 parallel to the x-axis.
This transformed curve could also be obtained by stretching $y=\frac{3}{x^{2}}$ by scale factor k parallel to the y-axis.
State the value of k.

State the transformation that maps the graph of $y=4 x^{2}+3$ onto the graph of $y=x^{2}+3$

8 (a) $\quad \mathrm{f}(x)=54 a \sqrt{a} x^{3}+27 a x^{2}-51 \sqrt{a} x+12$, where a is a non-zero constant.
Show that a stretch scale factor $3 \sqrt{a}$ parallel to the x-axis transforms the curve $y=\mathrm{f}(x)$ onto the curve $y=\mathrm{g}(x)$, where $\mathrm{g}(x)=2 x^{3}+3 x^{2}-17 x+12$
[3 marks]
8 (b) Hence find the solutions to $\mathrm{f}(x)=0$, giving your answers in terms of a.
[3 marks]
9 (a) The line $y=k x$, where k is a non-zero constant, touches the curve $y=\frac{1}{x-3}$ at exactly one point.
Find the value of k.
[3 marks]
9 (b) Using the value of k found in part (a), sketch the curves $y=\frac{1}{x-3}$ and $y=k x$ on the same set of axes.
You should label the point of intersection between the two curves.

9 (c) Explain why it is necessary to have the condition that k is a non-zero constant.

Section A: The basics

Write down the equation of the line with gradient 3 through the point $(4,-1)$ in the form $y-y_{1}=m\left(x-x_{1}\right)$.

2 (a) Find the gradient and the x - and y-intercepts of the line with equation $2 x+3 y-7=0$.

2 (b) Find the equation of a line that is parallel to $2 x+3 y-7=0$ through the point $(3,5)$.

2 (c) When does the line $y=2 x+1$ intersect the line $2 x+3 y-7=0$?

3 (a) The point P has coordinates (-2, 2), the point Q has coordinates $(1,6)$ and the point R has coordinates (5,3).
Show that $P Q$ and $Q R$ are perpendicular.
[3 marks]
3 (b) Find the distance of $R Q$.
[2 marks]
4
Find the equation of a circle with centre $(2,-5)$ and diameter 16.
[2 marks]
5
Find the centre and radius of the circle with equation $x^{2}+y^{2}+4 x-6 y-8=0$.

Section B: A bit more thinking

$6 \quad$ A circle passes through points $A(7,4), B(10,6)$ and $C(12,3)$. Show that $A C$ must be the diameter of the circle.
[4 marks]

7
The points $A(1,4)$ and $B(5,1)$ lie on a circle. The line segment $A B$ is a chord. Find the equation of a diameter of the circle.

8
A line has equation $y=k$, where k is a constant. For which values of k does the line not intersect the circle with equation $x^{2}+3 x+y^{2}+2 y-\frac{3}{4}=0$.

Section A: The basics

1 (a) Express the first four terms of the expansion $(2-3 x)^{8}$ in ascending powers of x.
[4 marks]
$2 \quad$ Find the coefficient of x^{5} in the expansion $\left(2+\frac{1}{2} x\right)^{11}$
[3 marks]
3 (a) By first completing the square, find the minimum point for the quadratic $y=x^{2}+7 x-30$.
[3 marks]
3 (b) Hence, sketch the graph $y=x^{2}+7 x-30$, including labelling where it crosses the axes.

Section B: A bit more thinking

4 (a) Using the Factor Theorem, show that $x+3$ is a factor of $\mathrm{p}(x)=x^{3}+9 x^{2}+27 x+27$

4 (b) Hence, or otherwise express $x^{3}+9 x^{2}+27 x+27$ as a product of linear factors.
[2 marks]
4 (c) Hence, describe the transformation from $y=x^{3}+9 x^{2}+27 x+27$ onto $y=(x-2)^{3}+$ 2

5 (a) Using the binomial expansion, or otherwise, express $(2+3 x)^{3}$ in the form $a+b x+c x^{2}+x^{3}$.

5 (b) Hence find the coefficient of x in the expansion $(2+3 x)^{3}\left(1-x^{-1}\right)^{5}$.
[4 marks]
6 Show with clear steps and a clear conclusion whether the line $y=3 x+2$ is a tangent to the circle $(y-1)^{2}+(x-3)^{2}=25$.

Section A: The basics

1 The graph of $y=\mathrm{f}(x)$ is shown in the diagram.

Which of the following graphs is a sketch of its gradient function?
Circle your answer

[1 mark]
2 (a) Use the binomial expansion to express $(2+h)^{3}$ in the form $h^{3}+6 h^{2}+p h+q$, where p and q are integers to be determined.
[2 marks]
2 (b) The curve with equation $y=x^{3}-5 x$ passes through the point $P(2,-2)$ and the point Q, where $x=2+h$.
Using differentiation from first principles, find the gradient of the tangent to the curve at the point P.

3 (a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=x^{4}-3 x^{3}+2 x+14$

3 (b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

4 Given $\mathrm{f}(x)=(2 x-3)\left(4+7 x-2 x^{2}\right)$, findf ${ }^{\prime}(x)$.

5 (a) Express $x^{2} \sqrt{x}$ in the form x^{p}, where p is a rational number.
[1 mark]
5 (b) Hence find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=x^{2} \sqrt{x}-\frac{3}{x}$.

Section B: A bit more thinking

6 Samir, a maths student, is using differentiation from first principles to evaluate the gradient of the curve $y=x^{2}+6 x$ at the point where $x=-4$.

His working is as follows:
Step $1 \quad$ When $x=-4, \quad y=16-24=-8$
$y=(-4+h)^{2}+6(-4+h)$
Step 2 When $x=-4+h, \quad=16+h^{2}-24+6 h$
$=h^{2}+6 h-8$
Step $3 \quad$ Gradient of chord $=\frac{\left(h^{2}+6 h-8\right)-(-8)}{(-4+h)-(-4)}=\frac{h^{2}+6 h}{h}=h+6$
Step $4 \quad$ Let $h=0$. Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$
There are two errors in Samir's working. Explain where these two errors occur.

7 (a) The height of a mountain, h kilometres, at a horizontal distance of x kilometres from a starting point, can be modelled by the equation $h=0.75 x^{\frac{4}{3}}-0.3 x^{2}$.
Find $\frac{\mathrm{d} h}{\mathrm{~d} x}$ when $x=1$ and interpret this value in context.

7 (b) Find $\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}$ when $x=1$ and interpret this value in context.

7 (c) State one limitation of using the equation $h=0.75 x^{\frac{4}{3}}-0.3 x^{2}$ to measure the actual height of the mountain when at a horizontal distance of x kilometres from the starting point.
[1 mark]
8
Given $\mathrm{f}(x)=(5+2 \sqrt{x})^{3}$, find $\mathrm{f}^{\prime}(x)$.
$9 \quad$ Find the coordinates of the points on the curve $y=3 x^{3}+\frac{4}{x}$ where the gradient is equal to -35 .

Section A: The basics

1 (a) Find the gradient of the curve $y=\sqrt{x}+\frac{1}{18} x^{3}$ at the point where $x=9$.

1 (b) Hence find an equation for the normal to the curve at the point $\left(9, \frac{87}{2}\right)$.
[2 marks]
2 (a) Given $y=12 x^{2}-\frac{3}{x}+\frac{4}{5}$, find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

2 (b) Hence find the x-coordinate of the stationary point.
[2 marks]
2 (c) Find an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and hence determine the nature of the stationary point.

3 (a) Given $\mathrm{f}(x)=2 x^{3}+2 x^{2}-42 x+15$, show that the values of x for which $\mathrm{f}(x)$ is decreasing satisfy the inequality $3 x^{2}+2 x-21<0$.

3 (b) Hence find the values of x for which $\mathrm{f}(x)$ is decreasing.

Section B: A bit more thinking

4 (a) The average cost, $£ P$, of purchasing a return flight from Manchester to Greece t months after 1st January can be modelled by the equation:

$$
P=0.67 t^{3}-13.32 t^{2}+70 t+207
$$

Use calculus to find the value of t at which the minimum average cost occurs and justify that it is a minimum.

4 (b) Explain whether the value of t found in part (a) is realistic.

5
The function $\mathrm{f}(x)=\frac{8}{x^{4}}+x-7$ has positive roots at the points A and B.
Find the x-coordinate of the point on the curve where the gradient is parallel to $A B$.
[3 marks]
6 The line $y=-\frac{1}{5} x$ is a normal to the curve $y=x \sqrt{x}-x+c$. Find the value of c.

7 Prove that the function $\mathrm{f}(x)=x^{\frac{5}{3}}-k x^{\frac{4}{3}}+k^{2} x$ is increasing for all non-zero values of the real constant k.

Section A: The basics

1 (a) A curve has gradient function given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{4}-5 x+2$
Find the general equation for this curve, giving your answer in the form $y=\mathrm{f}(x)$.

1 (b) Given further that the curve passes through the point (2, 12), find the equation for the curve, giving your answer in the form $y=\mathrm{f}(x)$.
[2 marks]

2 (a) Express $\frac{2 x-7 x^{2}}{x^{5}}$ in the form $2 x^{p}-7 x^{q}$
[1 mark]

2 (b) Hence find $\int \frac{2 x-7 x^{2}}{x^{5}} \mathrm{~d} x$

3 Evaluate $\int_{1}^{4} 6 x^{2}-\sqrt{x} \mathrm{~d} x$. You must show your working.

The diagram shows a shaded region R bounded by the curve $y=x^{2}-7$, the x-axis and the lines $x=-1$ and $x=2$.
Find the area of R.
Fully justify your answer.

[4 marks]

Section B: A bit more thinking

5 The diagram shows the graph of the curve

$$
y=2 x^{3}-4 x^{2}+5
$$

The curve intersects the y-axis at the point A.
The point B lies on the curve when $x=3$

Find the area of the shaded region bounded by the curve and the line segment $A B$.
Fully justify your answer.

6 (a) The curve $y=\mathrm{f}(x)$ has a gradient function

$$
\mathrm{f}^{\prime}(x)=\frac{2}{\sqrt{x}}-p \sqrt{x}
$$

A is the point on the curve where $x=\frac{1}{4}$
The equation of the tangent to the curve at A is $y=\frac{5}{2} x+\frac{7}{8}$
Show that $p=3$.
Fully justify your answer

6 (b) Find the equation of the curve, giving your answer in the form $y=\mathrm{f}(x)$

$$
\mathrm{f}(x)=\frac{8+3 x}{x^{3}}
$$

Find the value of the positive constant k such that $\int_{1}^{k} \mathrm{f}(x) \mathrm{d} x=6$.
Fully justify your answer.

Section A: The basics

1 (a) Circle the function that has a vertical line of symmetry at $y=450$.

$$
y=\sin x \quad y=\cos x \quad y=\tan x
$$

1 (b) Describe the symmetry and periodicity of the graph $=\tan x$.

2 Given that $\cos \theta=\frac{3}{5}$ and that θ is acute, find the exact values of $\sin \theta$ and $\tan \theta$.

3 (a) Sketch the graph of $y=\cos x$ for $-180^{\circ} \leq x \leq 180^{\circ}$.
[2 marks]
3 (b) Solve the equation $\cos x=-\frac{3}{4}$, giving all the answers between $00 \leq x \leq 360 \bigcirc$ correct to three significant figures.
[2 marks]
4 (a) The triangle $A B C$, is such that $A B=3 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.
The angle $A B C$ is θ.
Find the value of θ.
[3 marks]
4 (b) Hence find the area of the triangle $A B C$. Give your answer in exact form.
[3 marks]
5 Given that $\sin x=0.8$ find the values of $\sin \left(180^{\circ}-x\right)$ and $\sin \left(180^{\circ}+x\right)$.

Section B: A bit more thinking

$6 \quad$ A ship sails 5 km from S to T on a bearing of 062° and then 8 km from T to U on a bearing of 150°.
Calculate the distance $S U$ giving your answer correct to two significant figures.

7 (a) Three points of an equilateral triangle lie on a circumference of length 10π.
Show that the area of the triangle is given by $\frac{75 \sqrt{3}}{4} \mathrm{~cm}^{2}$.

7 (b) Calculate the perimeter of the triangle, leave your answer in surd form.
[3 marks]
8 (a) Consider a triangle $A B C$ such that $\angle B A C$ is equal to $30^{\circ}, A B=x, B C=4$ and $A C=5$.
Show with your reasoning why $x^{2}-5 \sqrt{3} x+9=0$.
[2 marks]
8 (b) Show that there are two solutions to the equation $x^{2}-5 \sqrt{3 x}+9=0$ and interpret it in this context.

Section A: The basics

1
Simplify $\frac{\cos ^{2} \theta}{1-\sin \theta}$
Circle your answer.

$$
1-\sin \theta
$$

$1+\cos \theta$
$1+\sin \theta$
$1-\cos \theta$
[1 mark]
2
Show that $(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2} \equiv 2$

3
Solve $\sin x=-\cos x$ for $0^{\circ} \leq x \leq 180^{\circ}$
[2 marks]

4
Solve $\cos \left(\frac{x}{2}+115^{\circ}\right)=-0.5$ for $0^{\circ} \leq x \leq 360^{\circ}$
[3 marks]
5 (a) Show that $\frac{\sin ^{2} \theta}{1+\cos \theta}=1-\cos \theta$
[2 marks]
5 (b) Hence solve $\frac{\sin ^{2} \theta}{1+\cos \theta}+3 \cos ^{2} \theta=3$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, giving your answers to the nearest 0.1 .

Section B: A bit more thinking

6 Solve $5 \sin x=4 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest 0.1°.

7 Solve $\sin \left(2 x-60^{\circ}\right)=0.5$ for $0^{\circ} \leq x \leq 360^{\circ}$
[4 marks]
8 (a) Solve the simultaneous equations $k \sin x=3, k \cos x=7$ for $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest 0.1°.
[3 marks]
8 (b) State the coordinates of the maximum and minimum values of $\mathrm{f}(x)=k \sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.

9 Prove that $\frac{\tan \theta \sin \theta}{1+\cos \theta} \equiv \frac{1}{\cos \theta}-1$

Section A: The basics

1 (a) Circle the correct graph for the function $y=a^{(x+3)}$ where a is a constant such that $a>1$.

1 (b) Sketch the graph $y=-b^{x}$ where b is a constant such that $0<b<1$.
State the coordinates of any intersections with the axes.

Express $3 \log x+0.5 \log y-2 \log z$ as a single logarithm.

Simplify $\ln \mathrm{e}^{x}-2 \ln \mathrm{e}^{-x}+0.5 \ln \mathrm{e}^{2 x}$

Sketch the graph $y=\ln (a x)$ where a is a positive constant.
State the coordinates of any intersections with the axes.
[2 marks]
Express $\log \sqrt[3]{\frac{a^{6}}{b^{3} c}}$ in terms of $\log a, \log b$ and $\log c$.

Section B: A bit more thinking

7
Given that $\log _{10} x=550$, find the value of $\log _{10} \frac{1000}{\sqrt{x}}$
[3 marks]
$8 \quad$ The tangent to the graph $y=\mathrm{e}^{k x}$ at $x=3$ has the equation $\mathrm{e}^{b} y+4 x=13$.
Find the values of k and b.
[4 marks]
$9 \quad$ Solve $\ln x=\ln (x+6)-\ln (x+2)$.
[5 marks]
10
Find the exact coordinates of the intersection of the line $y=4 x+7$ and the normal to the curve $y=\mathrm{e}^{3 x}$ at $x=0$.
[4 marks]

Section A: The basics

1
Solve $4^{2 x+5}=6$
Circle your answer.

$$
x=\frac{1}{2} \log \frac{6}{4}-5 \quad x=\frac{1}{2}(\log 6-5 \log 4) \quad x=\frac{1}{2}\left(\log \frac{6}{4}-5\right) \quad x=\frac{1}{2}\left(\frac{\log 6}{\log 4}-5\right)
$$

2 Solve $3^{x+2}=0.4$ giving your answer to 3 significant figures.

3 (a) The temperature $T^{\circ} \mathrm{C}$ of a liquid at time t minutes is given by the equation $T=50+35 \mathrm{e}^{-0.8 t}$ for $t \geq 0$
State the initial temperature of the liquid.

3 (b) Calculate the rate of change of the temperature when $t=2$ minutes.

3 (c) Calculate to the nearest second the length of time for the temperature to decrease to $60^{\circ} \mathrm{C}$.

3 (d) The model represents a cup of tea cooling to room temperature.
Explain why the prediction made by the model for large values of t may be inappropriate.
[2 marks]
4 (a) The table shows experimental values of x and y.

x	1	3	5	7
y	17.7	4.43	1.11	0.277

By plotting a suitable straight line graph, show that x and y are related by the equation $y=k b^{x}$ where k and b are constants to be found.

4 (b) Hence find y when $x=4$

Section B: A bit more thinking

5 Two years ago £200 was deposited in a bank account accruing compound interest. This has now increased to £240.
Assuming no more money (other than interest) is added to or taken from the account, how much money will the account contain after a further 10 years?
[5 marks]
6 The concentration of a particular drug in a patient's body decays exponentially. The initial dose given is $1.75 \mathrm{mg} / \mathrm{ml}$ and after five hours the concentration has dropped to $1.2 \mathrm{mg} / \mathrm{ml}$.
Find to the nearest minute how much longer it will take for the concentration to drop to $0.8 \mathrm{mg} / \mathrm{ml}$.

Using the graph, express y in terms of x.
Hence find y when $x=10$.

