MEI A level Maths Moments

Section 1: The moment of a force

Solutions to Exercise level 1

1. (i) Moment $=4 \times 2=8 \mathrm{Nm}$ anticlockwise
(ii) Moment $=8 \times 3=24 \mathrm{Nm}$ clockwise
(iii) Measuring clockwise, total moment $=5 \times 3-2 \times 1=15-2=13$ so moment $=13 \mathrm{Nm}$ clockwise
(iv) Measuring clockwise, total moment $=7 \times 4-5 \times 3-3 \times 5$

$$
=28-15-15=-2
$$

so moment $=2 \mathrm{Nm}$ anticlockwise.
2. (i) Taking moments about left end:

$$
\begin{aligned}
& 3 T_{2}=80 \\
& T_{2}=\frac{80}{3} \mathrm{~N}
\end{aligned}
$$

$40 \times 2-T_{2} \times 3=0$

Resolving vertically: $\quad T_{1}+\frac{80}{3}=40$

$$
T_{1}=\frac{40}{3} \mathrm{~N}
$$

(ii) Taking moments about left end: $40 \times 2+20 \times 3-T_{2} \times 4=0$

$$
4 T_{2}=140
$$

$$
T_{2}=35 \mathrm{~N}
$$

Resolving vertically: $\quad T_{1}+35=40+20$

$$
T_{1}=25 \mathrm{~N}
$$

(iii) Taking moments about right end: $80 \times 5.5+40 \times 3-T_{1} \times 3.5=0$

This means that the tension would have to act downwards, to the cable would need to be attached below the beam.
(iv) Taking moments about right end:
$50 \times 4.4+40 \times 2.2+30 \times 1.2-T_{1} \times 4=0$
$4 T_{1}=344$
$T_{1}=86 \mathrm{~N}$

$$
\begin{aligned}
& 3.5 T_{1}=560 \\
& T_{1}=160 \mathrm{~N} \\
& \text { Resolving vertically: } \\
& T_{2}+160=80+40 \\
& T_{2}=-40 \mathrm{~N}
\end{aligned}
$$

MEI A level Maths Moments 1 Exercise solutions

$$
\begin{array}{ll}
\text { Resolving vertically: } & T_{2}+86=50+40+30 \\
& T_{2}=34 \mathrm{~N}
\end{array}
$$

3. (i)

Resolving vertically: $10+20-P=0$

$$
P=30 \mathrm{~N}
$$

Taking moments about left-hand end: $20 \times 0.6-P x=0$

$$
30 x=12
$$

$$
x=0.4 \mathrm{~m}
$$

(ii)

Taking moments about left-hand end: $0.6 Q-0.2 \times 30=0$
$0.6 Q=6$ $Q=10 \mathrm{~N}$
Resolving vertically:

$$
\begin{aligned}
& P+Q-30=0 \\
& P+10=30 \\
& P=20 \mathrm{~N}
\end{aligned}
$$

4.

Taking moments about C: $20(1.4+x)+80 x-40(1.4-x)=0$

$$
\begin{aligned}
& 28+20 x+80 x-56+40 x=0 \\
& 140 x=28 \\
& x=0.2
\end{aligned}
$$

Distance of C from $A=1.6 \mathrm{~m}$.

