Section 1: The moment of a force

Solutions to Exercise level 2

1.

Taking moments about left-hand end:

$$
\begin{aligned}
& 0.75 Q-5 \mathrm{~g} \times 2=0 \\
& 0.75 Q=10 \mathrm{~g} \\
& Q=\frac{40}{3} g \mathrm{~N} \text { upwards }
\end{aligned}
$$

Resolving vertically: $Q-P-5 g=0$

$$
P=\frac{40}{3} g-5 g=\frac{25}{3} g \mathrm{~N} \text { downwards }
$$

2.

Taking moments about $M: 0.6 P+30 \times 0.3-20 \times 0.6=0$

$$
\begin{aligned}
& 0.6 P+9-12=0 \\
& 0.6 P=3 \\
& P=5
\end{aligned}
$$

The magnitude of P is 5 N .

Resolving vertically: $R-P-30-50-20=0$

$$
R=100+P=105
$$

The reaction at the fulcrum is 105 N .
3.

MEI A level Maths Moments 1 Exercise solutions

Taking moments about B: $(5 \times 0.8)+(20 \times 0.4)+(10 \times 0.3)-0.6 T_{1}=0$
$0.6 T_{1}=15$
$T_{1}=25$
$T_{1}+T_{2}-5-20-10=0$
$T_{2}=35-25=10$
The tensions in the strings are 25 N and 10 N .
4.

Resolving vertically: $160+200-W=0$
$W=360$
Taking moments about A: $(200 \times 4.5)-W x=0$

$$
360 x=900
$$

$$
x=2.5
$$

5. (i)

Taking moments about $B:(4 \times 750)-(1.5 \times 400)-2 W=0$ $2 W=3000-600$ $W=1200$
The maximum weight is 1200 N .
(ii)

MEI A level Maths Moments 1 Exercise solutions

Taking moments about B: $(4 \times 750)-(1.5 \times 400)-800 x=0$
$800 x=2400$
$x=3$
He can walk $3 m$ from B towards C.
6.

Taking moments about M: $(279 \times 2)-42 g x=0$

$$
x=\frac{27 \times 2}{42}=\frac{9}{7}
$$

He must sit $\frac{5}{7} m$ from the other end.
7. (i)

Taking moments about $P: 100 \mathrm{~g} \times 1.5-25 \mathrm{~g} \times 0.5-2.5 \mathrm{mg}=0$ $2.5 m=150-12.5$ $m=55$
The maximum mass is 55 kg .
(ii)

Taking moments about P :

$$
\begin{aligned}
& 1009 \times 1.5-25 g \times 0.5-759 x=0 \\
& 75 x=150-12.5 \\
& x=1.83
\end{aligned}
$$

He can walk 1.83 m from the side of the ship.

MEI A level Maths Moments 1 Exercise solutions

8. (i) If the beam is just about to tip about R, the reaction force at S is zero.

Taking moments about $R: 500 \times 1=400 x=0$

$$
x=1.25
$$

The centre of mass of the beam is 2.25 m from P.
(ii) The beam will tip about S when the reaction force at $R=0$.

Taking moments about s: $400 \times 0.75-500 y=0$

$$
y=0.6
$$

He is 0.4 m from Q when the beam is about to tip.

