AS and A-level
 MATHS

Simultaneous equations, linear and quadratic inequalities
Mark sch eme

Specification content coverage: B4, B5, B6

Question	Solutions				Mark
1	$\begin{aligned} & \left.\begin{array}{l} a=3 \quad b=-5 \quad c=4 \\ b^{2}-4 a c=25-4 \times 3 \times 4 \\ = \end{array}\right)-23 \end{aligned}$ Therefore no solutions				1 1 2
2	$\begin{aligned} & -2 x<-6 \text { or } 6<2 x \\ & x>3 \text { or } 3<x \end{aligned}$				$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
3	$\begin{aligned} & x^{2}+5 x-3=2 x+1 \\ & x^{2}-3 x-4=0 \\ & x=-4 \text { or } x=1 \\ & \hline \end{aligned}$				$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
4	$2 x$ +3 $2 x^{3}-3 x^{2}+3 x+$	$\begin{aligned} & \hline x^{2} \\ & \hline 2 x^{3} \\ & \hline 3 x^{2} \end{aligned}$	$\begin{aligned} & -3 x \\ & \hline-6 x^{2} \\ & \hline-9 x \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & \hline 12 x \\ & \hline 18 \\ & \hline \end{aligned}$	1 Six correct terms 1
5	(a) $P(2) \quad=2^{3}+4(2)^{2}-19(2)+14$ $=8+16-38+14=0(x-2)$ is a factor (b)				1 1 1 method: at most one error 1 for correct quotient 1
6	$\begin{aligned} & \mathrm{P}(-2)=-24+4 b \\ & \mathrm{P}(3)=81+9 b-3 \end{aligned}$	$\begin{aligned} & 2 c+5= \\ & +5=0 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$

	Solve sim equation $b=-23 / 6$ $c=103 / 6$	
7	$x-5=x^{2}+6 x+13$ $x^{2}+5 x+8=0$ $a=1 \quad b=5 \quad c=8$ $b^{2}-4 a c=25-4 \times 8=-23$ therefore $b^{2}-4 a c<0$ no roots, lines do not intersect or by completing square $(x+5 / 2)^{2}+7 / 4=0$ $(x+5 / 2)^{2}$ has to be greater than zero, there can be no solution as quadratic has min $7 / 4$	2 (must include concluding statement)
$c=16(y$ intercept $x=0, y=\mathrm{d})$ $2 \times-4 \times k=16($ examining constant terms of linear product and roots) $k=20 /-8=-2$ $(x+2)(x-4)(x-2)=x^{3}-4 x^{2}-4 x+16$	1	
$\mathbf{8}$	Find quotient $x^{2}+4 x-5$ Solve quotient to find other roots $x=-5$ and $x=1$ By sketching graph or otherwise find inequalities $-5<x<1$ or $x>2$	1
$\mathbf{9}$		2

Rationale

It is assumed that students are proficient at using calculator to solve quadratics/simultaneous equations.

15 marks scaffolded, with basic skill assessed
17 marks applying, including some basic proof and some more advanced problem-solving

