

AS and A-level MATHS

Simultaneous equations, linear and quadratic inequalities

Mark sch eme

Specification content coverage: B4, B5, B6

Question	Solutions	Mark
1	a = 3 $b = -5$ $c = 4$	1
	$b^2 - 4ac = 25 - 4 \times 3 \times 4$	1
	= -23	
	Therefore no solutions	2
2	-2x < -6 or 6 < 2x	1
	x > 3 or 3 < x	1
3	$x^2 + 5x - 3 = 2x + 1$	1
	$x^2 - 3x - 4 = 0$	1
	x = -4 or x = 1	1
4	$x^2 -3x = 6$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1 Cive as we at to was
	+3 $3x^2$ -9x 18	1 Six correct terms
	$2x^3 - 3x^2 + 3x + 18$	1
5	(a)	1
		1
	$P(2) = 2^3 + 4(2)^2 - 19(2) + 14$	
	= 8 + 16 - 38 + 14 = 0 (x -2) is a factor	
	(b)	
		1 method: at most one
	x^2 6x -7	error
	x x^3 $6x^2$ $-7x$	1 for correct quotient
	-2 $-2x^2$ $-12x$ 14	1
	(x-2)(x+7)(x-1)	
6	P(-2) = -24 + 4b + 2c + 5 = 0	1
	P(3) = 81 + 9b - 3c + 5 = 0	1

r		1
	Solve sim equation	
	<i>b</i> = –23/6	1
	c = 103/6	1
7	$x - 5 = x^2 + 6x + 13$	1
1	$x^{2} + 5x + 8 = 0$	1
	a = 1 $b = 5$ $c = 8$	1
	$b^2 - 4ac = 25 - 4 \times 8 = -23$ therefore $b^2 - 4ac < 0$ no roots, lines do not intersect	2 (must include concluding statement)
	or by completing square	
	$(x + 5/2)^2 + 7/4 = 0$	
	$(x + 5/2)^2$ has to be greater than zero, there can be no solution as quadratic has min 7/4	
8	c = 16 (y intercept $x = 0, y = d$)	1
	$2 \times -4 \times k = 16$ (examining constant terms of linear product and roots)	
	k = 20/-8 = -2	1
	$(x+2)(x-4)(x-2) = x^3 - 4x^2 - 4x + 16$	2
9	Find quotient	2
5	$x^2 + 4x - 5$	2
		<u> </u>
	Solve quotient to find other roots $x = -5$ and $x = 1$	1
	By sketching graph or otherwise find inequalities	
	-5 < x < 1 or $x > 2$	2

Rationale

It is assumed that students are proficient at using calculator to solve quadratics/simultaneous equations.

15 marks scaffolded, with basic skill assessed

17 marks applying, including some basic proof and some more advanced problem-solving