Trigonometrical equations

The trig graphs show us that due to symmetry, sin, cos and tan take similar values in all four quadrants (although some are negative). Sine is positive in the 1st and 2nd, cos is positive in the 1st and 4th and tan is positive in the 1st and 3rd. A CAST diagram can help us work out which other angles could be solutions to trigonometrical equations.

 $\cos\theta = 0.8$ 36.9 $\theta = 36.9 or 360 - 36.9$ 36.9 = 36.9 or 323.1C

Step 3 – find inverse trig of ratio (ignore negative signs) Step 4 – working clockwise from positive x axis, draw arcs representing two required angles within range -Step 5 – calculate size of angles using angle laws.

Step 1 – draw CAST diagram with two diagonal lines Step 2 - is ratio positive or negative? Cross off those quadrants not required. In this case we don't want tan to be positive so cross out A (all) and T (tan) Step 3 – find inverse trig of ratio (ignore negative signs) Step 4 – working clockwise from positive x axis, draw arcs representing two required angles within range. Step 5 – calculate size of angles using angle laws.

tan

634

Solve these in the range $0 \le \theta \le 360$ 1. $\sin\theta = 0.9$ $\sin^{-1} 0.9$

3. $\cos\theta = 0.3$

4. $\cos\theta = -0.25$

2. $\sin\theta = -0.1$

e.g.2

 $\tan \theta = -2$

5. $\tan \theta = 0.5$

19. $3\tan^2\theta + 4\tan\theta - 4 = 0$

20. $3\sin^2\theta + 3 = 13\sin\theta$