

TOPIC TEST MAR K

AS and A-level MATHS

Trigonometry 1

Mark sch eme

Specification content coverage: E1, E3 (AS content)

Question	Solutions	Mark
1 (a)	Circles $y = \sin x$	1
1 (b)	Rotational symmetry of order 2 about origin (or any multiple of 180°) Repeats every 180°	1
2	Using Pythagoras' theorem on a right-angled triangle gives $opp = 4$	1
	$\sin\theta = \frac{\text{opp}}{\text{hyp}} = \frac{4}{5}$ and $\tan\theta = \frac{\text{opp}}{\text{adj}} = \frac{4}{3}$	1
3 (a)	-180-160-140-120-100-80-60-40-20 0 -0.5- -1.0-	2
3 (b)	$x = \cos^{-1}\left(-\frac{3}{4}\right) = 138.5903779$	1
	The values within the range are 139° and 221°	1

4 (a)	$a^2 = b^2 + c^2 - 2bc \cos A$		1 use
	$7^2 = 3^2 + 5^2 - 2 \times 3 \times 5 \cos \theta$		of
	$15 = -30 \cos \theta$		cosine
	1		rule
	$\cos\theta = -\frac{1}{2}$		1
	heta= 120°		
			1
4 (b)	Area of triangle $=\frac{1}{2}ab\sin C$	1 use of sine r	ule
	Area of triangle = $\frac{1}{2} \times 3 \times 5 \sin 120^{\circ}$		
	Area of triangle = $\frac{1}{2} \times 3 \times 5 \times \frac{\sqrt{3}}{2}$	1	
	Area of triangle $=\frac{15\sqrt{3}}{4}$ cm ³	1	
5	$\sin(180^{\circ}-x)=0.8$	1	
	$\sin(180^\circ + x) = -0.8$	1	I
	$Slf = 5^2 + 8^2 - 2 \times 5 \times 8 \cos 92^9$	identifying ang needed	les
	$SU^2 = 91.79195$	1	
	SU = 9.6 km (correct to 2 significant figures)	1	

7 (a)	A	1 method
		1
		1
	B	1
	c	1
	$C = 2\pi r, 10\pi = 2\pi r, r = 5$	
	Three triangles meet at the centre of the circle with 120° in each	
	Area of triangle $=\frac{1}{2}ab\sin C$	
	Area of each of the three smaller triangles	
	$=\frac{1}{2}5\times5\sin 120^{\circ}\frac{25\sqrt{3}}{4}$	
	Therefore, area of equilateral triangle $=\frac{75\sqrt{3}}{4}$	
7 (b)	Each chord can be found by using the cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$	1
	$a^2 = 5^2 + 5^2 - 2 \times 5 \times 5 \cos 120^\circ$	
	$a^2 = 75$	
	$a = \sqrt{75} = 5\sqrt{3}$	1
	Therefore, perimeter = $15\sqrt{3}$	1
8 (a)	Using the cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$	
	$4^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 30^{\circ}$	1
	Rearranging gives $16 = 25 + x^2 - 10 \frac{\sqrt{3}}{2}x$	
	$x^2 - 5\sqrt{3}x + 9 = 0$	1

8 (b)	Either considers the discriminant (39) and shows positive or states the two solutions from a calculator to be $\frac{\sqrt{3}}{2} \left(5 \pm \frac{\sqrt{13}}{2} \right)$	1
	2 2 2 Acknowledges that this is an example of ambiguous case of the sine rule and there are two different possible lengths for	1