AS and A-level MATHS

Trigonometry 1

Mark sch eme

Specification content coverage: E1, E3 (AS content)

Question	Solutions	Mark
1 (a)	Circles $y=\sin x$	1
1 (b)	Rotational symmetry of order 2 about origin (or any multiple of 180°) Repeats every 180응	
2	Using Pythagoras' theorem on a right-angled triangle gives opp = 4 $\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{4}{5}$ and $\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{4}{3}$	
3 (a)		2
3 (b)	$x=\cos ^{-1}\left(-\frac{3}{4}\right)=138.5903779 \ldots$ The values within the range are 139° and 221°	1 1

7 (a)	$C=2 \pi r, 10 \pi=2 \pi r, r=5$ Three triangles meet at the centre of the circle with 120° in each Area of triangle $=\frac{1}{2} a b \sin C$ Area of each of the three smaller triangles $=\frac{1}{2} 5 \times 5 \sin 120^{\circ} \frac{25 \sqrt{3}}{4}$ Therefore, area of equilateral triangle $=\frac{75 \sqrt{3}}{4}$	1 method 1 1 1 1
7 (b)	Each chord can be found by using the cosine rule $\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos A \\ & a^{2}=5^{2}+5^{2}-2 \times 5 \times 5 \cos 120^{0} \\ & a^{2}=75 \\ & a=\sqrt{75}=5 \sqrt{3} \end{aligned}$ Therefore, perimeter $=15 \sqrt{3}$	1 1 1
8 (a)	Using the cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ $4^{2}=5^{2}+x^{2}-2 \times 5 \times x \cos 30^{\circ}$ Rearranging gives $16=25+x^{2}-10 \frac{\sqrt{3}}{2} x$ $x^{2}-5 \sqrt{3} x+9=0$	1 1

8 (b)	Either considers the discriminant (39) and shows positive or states the two solutions from a calculator to be $\frac{\sqrt{3}}{2}\left(5 \pm \frac{\sqrt{13}}{2}\right)$	1
	Acknowledges that this is an example of ambiguous case of the sine rule and there are two different possible lengths for x for the information given.	1

