AS and A-level MATHS

Vectors

Specification content coverage: J1, J2, J3, J4, J5

In this test you will be assessed on:

- using vectors in two dimensions
- calculating the magnitude and direction of a vector and converting between component form and magnitude/direction form
- adding vectors diagrammatically and performing the algebraic operations of vector addition and multiplication by scalars, understanding their geometrical interpretations
- understanding and using position vectors, and calculating the distance between two points represented by position vectors
- using vectors to solve problems in pure mathematics and in context, including forces.

The test comprises two sections. The questions in section A will test you on the basics of the topic. Those in section B require a bit more thinking.

Section A: The basics

$1 \quad$ Which of the following is a vector quantity?
Circle your answer.
Displacement
Mass
Speed
Time
[1 mark]
2 Which of the following vectors is parallel to the vector $\mathbf{a}-4 \mathbf{b}$?
Circle your answer.
$\frac{1}{2} a+2 b$
$8 b-2 a$
$3 a-6 b$
$a+4 b$
[1 mark]
3 In the triangle $P Q R, \overrightarrow{P Q}=\mathbf{q}$ and $\overrightarrow{P R}=\mathbf{r} . M$ is the midpoint of $P R$.
Find the vector $\overrightarrow{Q M}$ in terms of \mathbf{q} and \mathbf{r}.
[2 marks]
4
$\mathbf{a}=3 \mathbf{i}-\mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-3 \mathbf{j}$
Find $\mathbf{a}-\mathbf{2 b}$ in terms of \mathbf{i} and \mathbf{j}.
[2 marks]

5
Given that $\mathbf{p}=\binom{-3}{4}$, find:

5 (a) $|p|$
[1 mark]
5 (b) a unit vector in the direction of \mathbf{p}.
[1 mark]
5 (c) the angle between \mathbf{p} and the vector \mathbf{j}, giving your answer to 1 decimal place.
$6 \quad$ Write this vector in the form $x \mathbf{i}+y \mathbf{j}$

[2 marks]
7 The points A and B have coordinates $(4,5)$ and $(6,3)$ respectively.

7 (a) Write down the position vector of A in terms of \mathbf{i} and \mathbf{j}.

7 (b) Find $|\overrightarrow{A B}|$, giving your answer as a simplified surd.

Section B: A bit more thinking

8
Two forces, \mathbf{F}_{1} and \mathbf{F}_{2}, are given by the vectors $\mathbf{F}_{1}=(3 \mathbf{i}-4 \mathbf{j})$ newtons and $\mathbf{F}_{2}=(\mathbf{i}+p \mathbf{j})$ newtons respectively.

The resultant force acts in a direction parallel to the vector $(2 \mathbf{i}-3 \mathbf{j})$.
Find p. In this question, \mathbf{i} and \mathbf{j} represent east and north respectively.

A boat, A, has position vector $(2 \mathbf{i}+\mathbf{j}) \mathrm{km}$ and a buoy, B, has position vector $(6 \mathbf{i}-8 \mathbf{j}) \mathrm{km}$.

9 (a) Find the distance between the buoy and the boat.

9 (b) Find the bearing of the buoy from the boat.
[2 marks]
9 (c) The boat travels with constant velocity towards the buoy, taking 45 minutes to reach the buoy.
Find the velocity vector of the boat.
[2 marks]
$10 \quad X, Y$ and Z are collinear.
X and Y have position vectors $\binom{-1}{3}$ and $\binom{5}{-9}$ respectively.
Given that $X Z=3 Y Z$, find the possible position vectors for Z.
[3 marks]
11 The point A lies on the line $y=2 x-1$.
Given that $|\overrightarrow{O A}|=\sqrt{34}$, find the possible expressions for $\overrightarrow{O A}$ in the form $p \mathbf{i}+q \mathbf{j}$.

